Microwave-Assisted Synthesis of Zinc Oxide Nanoparticles on Paper

Article Preview

Abstract:

Nanostructured zinc oxide (ZnO) particles were grown on paper substrate made from Abaca hybrid 7 pulp. Microwave irradiation technique was used at power levels (180 and 540W) and exposure times (5, 10, 20 and 25 minutes). Chemical transformations were observed using Fourier Transform Infrared (FTIR) Spectroscopy. The effects of the power levels and exposure times on the morphology of the nanostructures were determined using scanning electron microscopy. FTIR spectra proved the embedment of ZnO on the paper substrate. Power levels and exposure times affected the distribution, particle size and structure of the ZnO nanoparticles. Higher power level and longer exposure resulted to the formation of more ZnO with larger particles. Grainlike and flowerlike ZnO nanostructures were formed at lower and higher levels, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

163-168

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Dele, Application of plastics and paper as food packaging materials: An overview. Emir. J. Food Agric 25(3) (2013) 177-188.

DOI: 10.9755/ejfa.v25i3.11509

Google Scholar

[2] T. A. Dankovich and J. A Smith, Incorporation of copper nanoparticles into paper for point-of-use water purification. Water Research 63, (2014) 245-251.

DOI: 10.1016/j.watres.2014.06.022

Google Scholar

[3] M. Jasai, S. Baruah, and J. Dutta, Paper modified with ZnO nanorods- antimicrobial studies. Beilstein Journal of Nanotechnology 3 (2012) 684-691.

DOI: 10.3762/bjnano.3.78

Google Scholar

[4] N. C. T., Martins, C. S. R. Freire, C. P. Neto, A. J. D.Silvestre, J. Causio, G. Baldi,P. Sadocco and T. Trindade, Antibacterial paper based on composite coatings of nanofibrillated cellulose and ZnO. Colloids Surf A Physicochem Eng Asp, 417 (2013).

DOI: 10.1016/j.colsurfa.2012.10.042

Google Scholar

[5] V. L. Prasanna and R. Vijayaraghavan, Insight into the mechanism of antibacterial activity of ZnO: Surface defects mediated reactive oxygen species even in the dark. Langmuir 31(33) (2015) 9155-9162.

DOI: 10.1021/acs.langmuir.5b02266

Google Scholar

[6] S. Baruah, M, Jaisai, R. Imani, M. Nazhdad and J. Dutta, Photocatalytic paper using zinc oxide nanorods. Science and Technology of Advance Materials 11(5) (2010).

DOI: 10.1088/1468-6996/11/5/055002

Google Scholar

[7] K. Ghule, A.V. Ghule, B.J. Chen and Y.C. Ling, Preparation and characterization of ZnO nanoparticles coated paper and its antibacterial activity study. Green Chem. 8 (2006) 1031-1041.

DOI: 10.1039/b605623g

Google Scholar

[8] P.T. Selvan, M. Venkatachalam, M. Saroja, P. Gowthaman, S. Ravikumar and S. Shankar, Influence of growth time on zinc oxide nanorods prepared by dip coating method. International Journal of Innovative Research in Science, Engineering and Technology 3(9) (2014).

DOI: 10.15680/ijirset.2014.0309077

Google Scholar

[9] Y. I. Xing, Z. H. Xi, Z. Q. Xue, X. D. Zhang, J. H. Song, R. M. Wang, J. Xu, Y. Song, S. L. Zhang and D. P. Yu, Optical properties of the ZnO nanotubes synthesized via vapor phase growth. Appl. Phys. Lett. 83(9) (2003) 1689-1691.

DOI: 10.1063/1.1605808

Google Scholar

[10] Y. Liu and J. Lian, Optical and electrical properties of aluminum-doped ZnO thin films grown by pulse laser deposition. Appl. Surf. Sci. 253(7) (2007) 3727-3730.

DOI: 10.1016/j.apsusc.2006.08.012

Google Scholar

[11] V.R. Shinde, T.P. Gujar, T. Noda, D. Fujita, A. Vinu, M. Grandcolas and J. Ye, Growth of shape- and size-selective zinc oxide nanorods by a microwave-assisted chemical bath deposition method: effect on photocatalysis properties. Chem. Eur. J. 16 (2010).

DOI: 10.1002/chem.200903370

Google Scholar

[12] A. K. Singh and U. T. Nakate, Photocatalytic properties of microwave-synthesized TiO2 and ZnO nanoparticles using malachite green dye. J. Nanopart. Res. (2013) 1-7.

DOI: 10.1155/2013/310809

Google Scholar

[13] A. Hatamie, A. Khan, M. Golabi, A. P. F. Turner, V. Beni, W.C Mak, A. Sadollahkhani, H. Alnoor, B. Zargar, S.Bano, O. Nur and M. Willander, Zinc Oxide Nanostructure-Modified Textile and Its Application to Biosensing, Photocatalysis, and as Antibacterial Material. Langmuir 31 (39) (2015).

DOI: 10.1021/acs.langmuir.5b02341

Google Scholar

[14] A. Sirelkhatim, S. Mahmud, A. Seeni, N. Haida, M. Kaus, L. C. Ann, S. K. M. Bakhori, H. Hasan and D. Mohamad, Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism. Nano-Micro Lett. 7(3) (2015).

DOI: 10.1007/s40820-015-0040-x

Google Scholar

[15] A. Stankovic, S. Dimitrijevic´ and D. Uskokovic´, Influence of size scale and morphology on antibacterial properties of ZnO powders hydrothermally synthesized using different surface stabilizing agents. Colloids Surf. B 102, 21–28 (2013).

DOI: 10.1016/j.colsurfb.2012.07.033

Google Scholar

[16] K.A. Tam, Djurisˇic´, C. Chan, Y. Xi, C. Tse, Y. Leung, W. Chan, F. Leung, D. Au, Antibacterial activity of ZnO nanorods prepared by a hydrothermal method. Thin Solid Films 516(18), 6167–6174 (2008).

DOI: 10.1016/j.tsf.2007.11.081

Google Scholar

[17] L.V.A. Stankovic, S. Markovic´, S. Dimitrijevic´, S.D. Sˇkapin, D. Uskokovic´, Morphology Controlled hydrothermal synthesis of ZnO particles and examination of their antibacterial properties on Escherichia coli and Staphylococcus aureus bacterial cultures, in Tenth Young Researchers' Conference—Materials Science and Engineering, Belgrade, Serbia, 21–23 December 2011 (Institute of Technical Sciences of SASA, Belgrade, 2011), p.62.

Google Scholar

[18] F. Ahmed, S. Kumar, N. Arshi, M. S. Anwar, B. H. Koo and C. G. Lee, Rapid and cost effective synthesis of ZnO nanorods using microwave irradiation technique. Funct. Mater. Lett. 4(1) (2011) 1-5.

DOI: 10.1142/s1793604711001531

Google Scholar

[19] H. Wang, J. Xie, K.Yan and M. Duan, Growth mechanism of different morphologies of ZnO crystals prepared by hydrothermal growth. J. Mater. Sci. Technol. 27(2) (2011) 153-158.

DOI: 10.1016/s1005-0302(11)60041-8

Google Scholar

[20] S. Horikoshi and N. Serpone (Eds.), Microwave in nanoparticle synthesis: Fundamentals and Applications. (2013). Wiley-VCH Verlag GmbH & Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany.

DOI: 10.1080/10426914.2016.1176196

Google Scholar