Hybrid Magnetorheological Elastomer, the Future of Gait Detection

Article Preview

Abstract:

This article aims to present a brief review on sensors used for gait detection in Ankle Foot Orthosis (AFO) application. Both the advantages and disadvantages of sensors such as EMG sensor, rotary encoder, foot switches, and force plate are highlighted in this article. Authors also addressed the four characteristics of sensors for gait detection; uniformity, installation, flexibility, and multi-measurement. In addition, the sensors were then compared based on the characteristics. The foot switch was identified as the most compatible sensor for gait detection. However, the sensor was also discovered to contain problems in its durability and uneven grounding. Consequently, the authors propose an introduction to a new material, hybrid Magnetorheological Elastomer (MRE). Coincidentally, the mentioned material possesses attributes of thin dimensions with adjustable stiffness. The thin dimension allows the hybrid MRE to be placed under the AFO sole. Furthermore, with an accurate degree of stiffness, the hybrid MRE allows for adjustment leading to a higher level of durability of the sensors which remains fine even if stomped on the user. In conclusion, the authors propose a further study on hybrid MRE AFO for the next study.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

177-183

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Bregman, D. J. J., De Groot, V., Van Diggele, P., Meulman, H., Houdijk, H., & Harlaar, J. (2010).

Google Scholar

[2] Chisholm, A. E., Perry, S. D. and McIlroy, W. E. Correlations between ankle foot impairments and dropped foot gait deviations among stroke survivors. Clinical Biomechanics, 2013. 28(9-10): 1049–1054. ISSN 02680033.

DOI: 10.1016/j.clinbiomech.2013.09.007

Google Scholar

[3] Tanida, S., Kikuchi, T., Kakehashi, T., Otsuki, K., Ozawa, T., Fujikawa, T., Yasuda, T., Furusho, J., Morimoto, S. and Hashimoto, Y. Intelligently controllable Ankle Foot Orthosis (I-AFO) and its application for a patient of Guillain-Barre syndrome. 2009 IEEE International Conference on Rehabilitation Robotics, ICORR 2009, 2009: 857–862. ISSN 1945-7898.

DOI: 10.1109/icorr.2009.5209590

Google Scholar

[4] Mahon, C. E. and Lewek, M. D. Individual limb mechanical analysis of gait following stroke. Journal of Biomechanics, 2013. 1538125(6): 43. ISSN 18732380.

Google Scholar

[5] Delafontaine, A., Gagey, O., Colnaghi, S., Do, M.-C., & Honeine, J.-L. (2017). Rigid Ankle Foot Orthosis Deteriorates Mediolateral Balance Control and Vertical Braking during Gait Initiation. Frontiers in Human Neuroscience, 11(April), 1–10.

DOI: 10.3389/fnhum.2017.00214

Google Scholar

[6] F. Frascarelli et al., The impact of robotic rehabilitation in children with acquired or congenital movement disorders,, Eur. J. Phys. Rehabil. Med., vol. 45, no. 1, p.41–135, Mar. (2009).

Google Scholar

[7] Information on https://www.sparkfun.com/products/13723.

Google Scholar

[8] Ferris, D. P., Gordon, K. E., Sawicki, G. S. and Peethambaran, A. An improved powered ankle-foot orthosis using proportional myoelectric control. Gait and Posture, 2006. 23(4): 425–428. ISSN 09666362.

DOI: 10.1016/j.gaitpost.2005.05.004

Google Scholar

[9] Adiputra, D., Ubaidillah, Mazlan, S.A, Zamzuri, H., and Rahman, M.A.A. Fuzzy Logic Control for Ankle Foot Orthoses Equipped with Magnetorheological Brake. Jurnal Teknologi 78:11, 2016. 25-32.

DOI: 10.11113/.v78.7942

Google Scholar

[10] Kikuchi, T., Tanida, S., Otsuki, K., Yasuda, T. and Furusho, J. Development of third-generation intelligently controllable ankle-foot orthosis with compact MR fluid brake. Proceedings - IEEE International Conference on Robotics and Automation, 2010: 2209–2214. ISSN 10504729.

DOI: 10.1109/robot.2010.5509729

Google Scholar

[11] Kikuchi, T., Tanida, S., Otsuki, K., Yasuda, T. and Furusho, J. A novel estimating method of the gait state and velocity control in the initial stance phase for the intelligent ankle foot orthosis with compact MR fluid brake(iAFO). 2010. 10: 240–246.

DOI: 10.1109/robot.2010.5509729

Google Scholar

[12] Fleischer, C. and Hommel, G. EMG-Driven Human Model for Orthosis Control. proceedings of the 6th annual Human Interaction with Machines workshop, 2006: 69–76.

DOI: 10.1007/1-4020-4043-1_8

Google Scholar

[13] Young, a. J., Kuiken, T. a. and Hargrove, L. J. Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses. Journal of Neural Engineering, 2014. 11(5): 056021. ISSN 1741- 2560.

DOI: 10.1088/1741-2560/11/5/056021

Google Scholar

[14] Nazmi, N., Shin-Ichiroh, Y., Rahman, M. A. A., Ahmad, S. A., Adiputra, D., Zamzuri, H., & Mazlan, S. A. (2016).

Google Scholar

[15] Nazmi, N., Shin-Ichiroh, Y., Rahman, M. A. A., Ahmad, S. A., Adiputra, D., Zamzuri, H., & Mazlan, S. A. (2016).

Google Scholar

[16] M. R. Jolly, J. D. Carlson, and B. C. Muñoz, A model of the behaviour of magnetorheological materials,, Smart Mater. Struct., vol. 5, no. 5, p.607–614, (1999).

DOI: 10.1088/0964-1726/5/5/009

Google Scholar

[17] J. D. Carlson and M. R. Jolly, MR fluid, foam and elastomer devices,, Mechatronics, vol. 10, no. 4, p.555–569, (2000).

DOI: 10.1016/s0957-4158(99)00064-1

Google Scholar

[18] X. Zhang, S. Peng, W. Wen, and W. Li, Analysis and fabrication of patterned magnetorheological elastomers,, Smart Mater. Struct., vol. 17, no. 4, p.45001, Aug. (2008).

DOI: 10.1088/0964-1726/17/4/045001

Google Scholar

[19] I. Bica, Influence of the transverse magnetic field intensity upon the electric resistance of the magnetorheological elastomer containing graphite microparticles,, Mater. Lett., vol. 63, no. 26, p.2230–2232, (2009).

DOI: 10.1016/j.matlet.2009.07.032

Google Scholar

[20] H. Zou, L. Zhang, M. Tian, S. Wu, and S. Zhao, Study on the structure and properties of conductive silicone rubber filled with nickel-coated graphite,, J. Appl. Polym. Sci., vol. 115, no. 5, p.2710–2717, Mar. (2009).

DOI: 10.1002/app.29901

Google Scholar

[21] W. Li, K. Kostidis, X. Zhang, and Y. Zhou, Development of a Force Sensor Working with MR Elastomers,, p.233–238, (2009).

Google Scholar

[22] G. Bossis, C. Abbo, S. Cutillas, S. Lacis, and C. Métayer, Electroactive and Electrostructured Elastomers,, Int. J. Mod. Phys. B, vol. 15, no. 06n07, p.564–573, (2001).

DOI: 10.1142/s0217979201005027

Google Scholar

[23] T. F. Tian, W. H. Li, G. Alici, H. Du, and Y. M. Deng, Microstructure and magnetorheology of graphite-based MR elastomers,, Rheol. Acta, vol. 50, no. 9–10, p.825–836, (2011).

DOI: 10.1007/s00397-011-0567-9

Google Scholar

[24] Bregman, D. J. J., De Groot, V., Van Diggele, P., Meulman, H., Houdijk, H., & Harlaar, J. (2010).

Google Scholar