Experimental Investigation on Synthesis of Nanocrystalline Hydroxyapatite by the Mechanochemical Method

Article Preview

Abstract:

Mechanochemical synthesis is a simple and effective method to prepare ceramic compounds with nanosize. The present work was aimed at investigating the application of the mechanochemical method to synthesize nanocrystalline hydroxyapatite (HA). The shortest milling time required for synthesizing HA, using Ca (OH)2 and (NH4)2HPO4 as precursor materials was also established. The synthesized samples were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM) to determine the phases evolved, functional groups present and to assess the size and morphology of the particles, respectively. Further, the thermal stability of the synthesized powders was investigated by heating to a temperature of 900 °C with a dwell time of 2 h. The broadening of the XRD peaks was used to find out the crystallite size and Williamson-Hall plots were used to estimate the lattice strain. The XRD and FTIR results demonstrated that the complete formation of the HA phase by mechanochemical method has started within a milling time of 30 min using Ca (OH)2 and (NH4)2HPO4 as precursors and the Ca/P ratio of the HA increased with increasing milling time. The TEM micrographs demonstrated that the HA particles are nanosized, non-spherical and highly agglomerated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

149-155

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.V. Dorozhkin, Bioceramics of calcium orthophosphates, Biomaterials, 31 (2010) 1465–1485.

DOI: 10.1016/j.biomaterials.2009.11.050

Google Scholar

[2] J. Kolmas, S. Krukowski, A. Laskus, M. Jurkitewicz, Synthetic hydroxyapatite in pharmaceutical applications, Ceram. Int., 42 (2016) 2472 -2487.

DOI: 10.1016/j.ceramint.2015.10.048

Google Scholar

[3] Md. Karimi, S. Hesaraki, M. Alizadeh, A. Kazemzadeh, One-pot and sustainable synthesis of nanocrystalline hydroxyapatite powders using deep eutectic solvents, Mater. Lett., 175 (2016) 89-92.

DOI: 10.1016/j.matlet.2016.04.037

Google Scholar

[4] K. Venkateswarlu, D. Sreekanth, M. Sandhyarani, V. Muthupandi, A.C. Bose, and N. Rameshbabu, X-ray peak profile analysis of nanostructured hydroxyapatite and fluorapatite, Int. J. Biosci., Biochem. and Bioinform., 2 (2012) 417-421.

DOI: 10.7763/ijbbb.2012.v2.139

Google Scholar

[5] M. Sadat-Shojai, Md.T. Khorasani, E. Dinpanah-Khoshdargi and A. Jamshidi, Synthesis methods for nanosized hydroxyapatite with diverse structures, Acta Biomater., 9 (2013) 7591- 7621.

DOI: 10.1016/j.actbio.2013.04.012

Google Scholar

[6] B. Nasiri-Tabrizi, A. Fahami, R. Ebrahimi-Kahrizsangi, Effect of milling parameters on the formation of nanocrystalline hydroxyapatite using different raw materials, Ceram. Int., 39 (2013) 5751- 5763.

DOI: 10.1016/j.ceramint.2012.12.093

Google Scholar

[7] N.V. Bulina, M.V. Chaikina, Igor Yu. Prosanov, D.V. Dudina, Leonid A. Solovyov, Fast synthesis of La-substituted apatite by the dry mechanochemical method and analysis of its structure, J. Solid State Chem., 252 (2017) 93-99.

DOI: 10.1016/j.jssc.2017.05.008

Google Scholar

[8] N. Rameshbabu, T.S. Sampath Kumar, R. Murugan and K. Prasad Rao, Mechanochemical synthesis of nanocrystalline fluorinated hydroxyapatite, Int. J. Nanosci., 4 (2005) 643-649.

DOI: 10.1142/s0219581x05003681

Google Scholar

[9] B. Nasiri-Tabrizi, P. Honarmandi, R. Ebrahimi-Kahrizsangi and P. Honarmandi, Synthesis of nanosize single-crystal hydroxyapatite via mechanochemical method, Mater. Lett., 63 (2009) 543-546.

DOI: 10.1016/j.matlet.2008.11.030

Google Scholar

[10] R. Ebrahimi-Kahrizsangi, B. Nasiri-Tabrizi, A. Chami, Characterization of single-crystal fluorapatite nanoparticles synthesized via mechanochemical method, Particuology, 9 (2011) 537-544.

DOI: 10.1016/j.partic.2011.07.001

Google Scholar

[11] C.C. Silva, A.G. Pinheiro, R.S. de Oliveira, J.C. Go´es, N. Aranha, L.R. de Oliveira and A.S.B. Sombra, Properties and in vivo investigation of nanocrystalline hydroxyapatite obtained by mechanical alloying, Mater. Sci. Eng. C, 24 (2004) 549-554.

DOI: 10.1016/j.msec.2004.02.004

Google Scholar

[12] E.M. Zahrani and M.H. Fathi, The effect of high-energy ball milling parameters on the preparation and characterization of fluorapatite nanocrystalline powder, Ceram. Int., 35 (2009) 2311-2323.

DOI: 10.1016/j.ceramint.2009.01.012

Google Scholar

[13] M.H. Fathi and E.M. Zahrani, Fabrication and characterization of fluoridated hydroxyapatite nanopowders via mechanical alloying, J. Alloys Compd., 475 (2009) 408-414.

DOI: 10.1016/j.jallcom.2008.07.058

Google Scholar

[14] A.Patterson, The Scherrer Formula for X-ray particle size determination. Phys. Rev., 56 (1939) 978-982.

DOI: 10.1103/physrev.56.978

Google Scholar

[15] V.D. Mote, Y. Purushotham and B.N. Dole, Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles, J. Theor. Appl. Phys., (2012) 6:6.

DOI: 10.1186/2251-7235-6-6

Google Scholar

[16] K. Pavankumar, K. Venkateswarlu, N. Rameshbabu and V. Muthupandi, X-ray peak broadening and in-vitro dissolution studies of thermally stabilized nanocrystalline carbonated hydroxyapatite, Key Eng. Mater, 493-494 (2012) 739-745.

DOI: 10.4028/www.scientific.net/kem.493-494.739

Google Scholar

[17] K. Venkateswarlu, A. ChandraBose and N. Rameshbabu, X-ray peak broadening studies of nanocrystalline hydroxyapatite by Williamson–Hall analysis, Physica B, 405 (2010) 4256-4261.

DOI: 10.1016/j.physb.2010.07.020

Google Scholar

[18] ASM Hand Book, Powder Metal Technologies and Applications, ASM International, 7(1998).

Google Scholar