Investigation of the Electrical, Optical, and Mechanical Properties of Ag Nanowire Conducting Electrode

Article Preview

Abstract:

Silver (Ag) nanowire having mean diameter and length of about 170.42 nm and 20.01 µm were prepared by the polyol process in ethylene glycol. Ag nanowires transparent conducting electrodes were then fabricated by depositing the Ag nanowires in ethanol and ink formulation on polymer substrates using a Meyer rod. The Ag nanowire electrodes exhibit an optical transmittance of about 68 % due to the large diameters of the as synthesized Ag nanowires. On the other hand, the sheet resistance was measured to be about 148 ohms/sq. When expose in air for 10 weeks, the sheet resistance increase to about 13 kohms/sq. Localized Joule heating during application of electrical stress of about 2 V for 7 days has resulted in the Ag nanowire degradation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

156-162

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Meenakshi, R. Karthick, M. Selvaraj, S. Ramu. Investigations on reduced graphene oxide film embedded with silver nanowire as transparent conducting electrode, Solar Energy Mater. Solar Cell.128 (2014) 264-269.

DOI: 10.1016/j.solmat.2014.05.013

Google Scholar

[2] Y. Altin, M. Tas, İ. Borazan, A. Demir, A. Bedeloglu. Solution-processed transparent conducting electrodes with graphene, silver nanowires and PEDOT:PSS as alternative to ITO." Surf. Coatings Tech. 302 (2016) 75–81.

DOI: 10.1016/j.surfcoat.2016.05.058

Google Scholar

[3] N de Guzman, M.D.L. Balela. Growth of ultralong Ag Nanowires by electroless deposition in hot ethylene glycol for flexible transparent conducting electrodes, J. Nanomater. 2017 (2017) Article ID 7896094, 14 pages.

DOI: 10.1155/2017/7896094

Google Scholar

[4] N. de Guzman, J. Lopez, M. Vasquez Jr. M.D. Balela. Conductivity improvement of silver nanowires transparent electrodes by surface plasma treatment, Mater. Sci. Forum, 890 (2017) 89-92.

DOI: 10.4028/www.scientific.net/msf.890.89

Google Scholar

[5] N. De Guzman, A. Mechilina, M.D.L. Balela, Electroless deposition of silver nanoparticles and nanowires in ethylene glycol, Adv. Mater. Res. 1043(2014)109-113.

DOI: 10.4028/www.scientific.net/amr.1043.109

Google Scholar

[6] N. de Guzman, M.D. Balela, CuCl2-mediated synthesis of silver nanowires for flexibletransparent conducting films, MATEC Web of Conferences 27 (2015) 03007.

DOI: 10.1051/matecconf/20152703007

Google Scholar

[7] J.H. Kim, T.-W. Kang, S.-N. Kwon, S.-I. Na, Y.-Z. Yoo, H.-S. Im, T.-Y. Seong. Transparent conductive ITO/Ag/ITO Electrode deposited at room temperature for organic solar cells, J. Electronic Mater.46 (2017) 306-311.

DOI: 10.1007/s11664-016-4956-9

Google Scholar

[8] K. Lim, S. Jung, J.-K. Kim, J.-W. Kang, J.-H. Kim, S.-H. Choa, D.-G. Kin. Flexible PEDOT:PSS/ITO hybrid transparent conducting electrode for organic photovoltaics. Solar Energy Mater, Solar Cells 115 (2013) 71-78.

DOI: 10.1016/j.solmat.2013.03.028

Google Scholar

[9] M.D.L. Balela, R.A. Acedera, C.L.I. Flores C.M.O. Pelicano, Surface modification of ZnO nanostructured film prepared by hot water oxidation, S urf.Coatings Tech. 340 (2018) 199-209.

DOI: 10.1016/j.surfcoat.2018.02.055

Google Scholar

[10] M.D.L. Balela, C.M.O. Pelicano, J. Damasco-Ty, H. Yanagi, Formation of zinc oxide nanostructures by wet oxidation of vacuum-deposited zinc thin film, Optic. Quantum Elec., 49 (2017) 3.

DOI: 10.1007/s11082-016-0834-1

Google Scholar

[11] M.D.L. Balela, C.M.O. Pelicano, Z. Lockman, In situ mixed potential study of the growth of zinc oxide nanostructures by wet oxidation of zinc foil, J. Mater. Sci. 52 (2017) 2319-2328.

DOI: 10.1007/s10853-016-0524-1

Google Scholar

[12] M. Tan, M.D.L. Balela, Electrochemical investigation of the growth of copper nanowires in the presence of ethylene diamine by mixed potential, J. Electrochem. Soc. 164(2017) D386-D393.

DOI: 10.1149/2.0491707jes

Google Scholar

[13] M.D.L. Balela, M. Tan. Formation of ultralong copper nanowires by hydrothermal growth for transparent conducting applications. AIP Conference Proceedings 1865 (2017) 050001.

DOI: 10.1063/1.4993366

Google Scholar

[14] P. Zhang, I. Wyman , J. Hu, S. Lin, Z. Zhong, Y. Tu, Z. Huang, Y. Wei. Silver nanowires: synthesis technologies, growth mechanism and multifunctional applications. Mater. Sci. Eng. B. 223 (2017) 1-23.

DOI: 10.1016/j.mseb.2017.05.002

Google Scholar

[15] J.-Y. Lee, D. Shin, J. Park. Fabrication of silver nanowire-based stretchable electrodes using spray coating." Thin Solid Films. 608 (2016) 34–43.

DOI: 10.1016/j.tsf.2016.04.008

Google Scholar

[16] C.-H. Liu and X. Yu. Silver nanowire-based transparent, flexible, and conductive thin film, Nanoscale Res. Lett 6 (2011) 75.

DOI: 10.1186/1556-276x-6-75

Google Scholar

[17] A.B.V..K Kumar, C. wan Bae, L. Piao, S.-H. Kim. Silver nanowire based flexible electrodes with improved properties: high conductivity, transparency, adhesion and low haze. Mater. Res. Bull. 48 (2013): 2944–2949.

DOI: 10.1016/j.materresbull.2013.04.035

Google Scholar

[18] J.L. Elechiguerra, L. Larios-Lopez, C. Liu, D. Garcia-Gutierrez, A. Camacho-Brag. ado, M. Jyacaman, Corrosion at the nanoscale: the case of silver nanowires and nanoparticles, Chem. Mater. 17 (2005) 6042-6052.

DOI: 10.1021/cm051532n

Google Scholar

[19] H.H. Khaligh, I.A. Goldthorpe, Failure of silver nanowire transparent electrodes under current flow. Nanoscale Res. Lett. 8 (2013) 235.

DOI: 10.1186/1556-276x-8-235

Google Scholar

[20] A. Vafaei, A. Hu, I.A. Goldthorpe, Joining of individual silver nanowires via electrical current. Nanomicro Lett. 6 (2014): 293-300.

DOI: 10.1007/s40820-014-0001-9

Google Scholar

[21] A. Pichitpajongkit, J. Lee, H. Eom, D. Yang, J. Yoon, J. Lee, I. Park. Joule heating and thermal analysis of silver nanowire random network. The Korean Soc. Mech. Eng. 12 (2013) 2803-2805.

Google Scholar

[22] T.-B. Song, Y. Chen, C.-H. Chung, Y. (Michael) Yang, B. Bob, H.-S. Duan, G. Li, K.-N. Tu, Y. Huang, Y. Yang, Nanoscale joule heating and electromigration enhanced ripening of silver nanowire contacts. ACS Nano 8 (2014) 2804-2811.

DOI: 10.1021/nn4065567

Google Scholar