[1]
P. Meenakshi, R. Karthick, M. Selvaraj, S. Ramu. Investigations on reduced graphene oxide film embedded with silver nanowire as transparent conducting electrode, Solar Energy Mater. Solar Cell.128 (2014) 264-269.
DOI: 10.1016/j.solmat.2014.05.013
Google Scholar
[2]
Y. Altin, M. Tas, İ. Borazan, A. Demir, A. Bedeloglu. Solution-processed transparent conducting electrodes with graphene, silver nanowires and PEDOT:PSS as alternative to ITO." Surf. Coatings Tech. 302 (2016) 75–81.
DOI: 10.1016/j.surfcoat.2016.05.058
Google Scholar
[3]
N de Guzman, M.D.L. Balela. Growth of ultralong Ag Nanowires by electroless deposition in hot ethylene glycol for flexible transparent conducting electrodes, J. Nanomater. 2017 (2017) Article ID 7896094, 14 pages.
DOI: 10.1155/2017/7896094
Google Scholar
[4]
N. de Guzman, J. Lopez, M. Vasquez Jr. M.D. Balela. Conductivity improvement of silver nanowires transparent electrodes by surface plasma treatment, Mater. Sci. Forum, 890 (2017) 89-92.
DOI: 10.4028/www.scientific.net/msf.890.89
Google Scholar
[5]
N. De Guzman, A. Mechilina, M.D.L. Balela, Electroless deposition of silver nanoparticles and nanowires in ethylene glycol, Adv. Mater. Res. 1043(2014)109-113.
DOI: 10.4028/www.scientific.net/amr.1043.109
Google Scholar
[6]
N. de Guzman, M.D. Balela, CuCl2-mediated synthesis of silver nanowires for flexibletransparent conducting films, MATEC Web of Conferences 27 (2015) 03007.
DOI: 10.1051/matecconf/20152703007
Google Scholar
[7]
J.H. Kim, T.-W. Kang, S.-N. Kwon, S.-I. Na, Y.-Z. Yoo, H.-S. Im, T.-Y. Seong. Transparent conductive ITO/Ag/ITO Electrode deposited at room temperature for organic solar cells, J. Electronic Mater.46 (2017) 306-311.
DOI: 10.1007/s11664-016-4956-9
Google Scholar
[8]
K. Lim, S. Jung, J.-K. Kim, J.-W. Kang, J.-H. Kim, S.-H. Choa, D.-G. Kin. Flexible PEDOT:PSS/ITO hybrid transparent conducting electrode for organic photovoltaics. Solar Energy Mater, Solar Cells 115 (2013) 71-78.
DOI: 10.1016/j.solmat.2013.03.028
Google Scholar
[9]
M.D.L. Balela, R.A. Acedera, C.L.I. Flores C.M.O. Pelicano, Surface modification of ZnO nanostructured film prepared by hot water oxidation, S urf.Coatings Tech. 340 (2018) 199-209.
DOI: 10.1016/j.surfcoat.2018.02.055
Google Scholar
[10]
M.D.L. Balela, C.M.O. Pelicano, J. Damasco-Ty, H. Yanagi, Formation of zinc oxide nanostructures by wet oxidation of vacuum-deposited zinc thin film, Optic. Quantum Elec., 49 (2017) 3.
DOI: 10.1007/s11082-016-0834-1
Google Scholar
[11]
M.D.L. Balela, C.M.O. Pelicano, Z. Lockman, In situ mixed potential study of the growth of zinc oxide nanostructures by wet oxidation of zinc foil, J. Mater. Sci. 52 (2017) 2319-2328.
DOI: 10.1007/s10853-016-0524-1
Google Scholar
[12]
M. Tan, M.D.L. Balela, Electrochemical investigation of the growth of copper nanowires in the presence of ethylene diamine by mixed potential, J. Electrochem. Soc. 164(2017) D386-D393.
DOI: 10.1149/2.0491707jes
Google Scholar
[13]
M.D.L. Balela, M. Tan. Formation of ultralong copper nanowires by hydrothermal growth for transparent conducting applications. AIP Conference Proceedings 1865 (2017) 050001.
DOI: 10.1063/1.4993366
Google Scholar
[14]
P. Zhang, I. Wyman , J. Hu, S. Lin, Z. Zhong, Y. Tu, Z. Huang, Y. Wei. Silver nanowires: synthesis technologies, growth mechanism and multifunctional applications. Mater. Sci. Eng. B. 223 (2017) 1-23.
DOI: 10.1016/j.mseb.2017.05.002
Google Scholar
[15]
J.-Y. Lee, D. Shin, J. Park. Fabrication of silver nanowire-based stretchable electrodes using spray coating." Thin Solid Films. 608 (2016) 34–43.
DOI: 10.1016/j.tsf.2016.04.008
Google Scholar
[16]
C.-H. Liu and X. Yu. Silver nanowire-based transparent, flexible, and conductive thin film, Nanoscale Res. Lett 6 (2011) 75.
DOI: 10.1186/1556-276x-6-75
Google Scholar
[17]
A.B.V..K Kumar, C. wan Bae, L. Piao, S.-H. Kim. Silver nanowire based flexible electrodes with improved properties: high conductivity, transparency, adhesion and low haze. Mater. Res. Bull. 48 (2013): 2944–2949.
DOI: 10.1016/j.materresbull.2013.04.035
Google Scholar
[18]
J.L. Elechiguerra, L. Larios-Lopez, C. Liu, D. Garcia-Gutierrez, A. Camacho-Brag. ado, M. Jyacaman, Corrosion at the nanoscale: the case of silver nanowires and nanoparticles, Chem. Mater. 17 (2005) 6042-6052.
DOI: 10.1021/cm051532n
Google Scholar
[19]
H.H. Khaligh, I.A. Goldthorpe, Failure of silver nanowire transparent electrodes under current flow. Nanoscale Res. Lett. 8 (2013) 235.
DOI: 10.1186/1556-276x-8-235
Google Scholar
[20]
A. Vafaei, A. Hu, I.A. Goldthorpe, Joining of individual silver nanowires via electrical current. Nanomicro Lett. 6 (2014): 293-300.
DOI: 10.1007/s40820-014-0001-9
Google Scholar
[21]
A. Pichitpajongkit, J. Lee, H. Eom, D. Yang, J. Yoon, J. Lee, I. Park. Joule heating and thermal analysis of silver nanowire random network. The Korean Soc. Mech. Eng. 12 (2013) 2803-2805.
Google Scholar
[22]
T.-B. Song, Y. Chen, C.-H. Chung, Y. (Michael) Yang, B. Bob, H.-S. Duan, G. Li, K.-N. Tu, Y. Huang, Y. Yang, Nanoscale joule heating and electromigration enhanced ripening of silver nanowire contacts. ACS Nano 8 (2014) 2804-2811.
DOI: 10.1021/nn4065567
Google Scholar