Synthesis of Novel Geopolymer Supported Nano Bimetallic Catalysts and its Application for Isopropanol Dehydrogenation

Article Preview

Abstract:

A novel geopolymer supported nanobimetallic catalyst for isopropanol dehydrogenation was prepared by modified wet impregnation and reduction method. XRD, SEM, EDX and TEM analysis confirmed formation of amorphous geopolymer from the polymerization of metakaolin and deposition of nanometals over the geopolymer support. The bimetallic catalyst containing 5wt. % Cu and 10wt. % Ni loading over geopolymer shows an excellent performance with 23.18% conversion of isopropanol and 88.24% selectivity to acetone under reaction conditions of 90 °C, 3 hours, and catalyst amount of 0.15g/5.0g of isopropanol. Moreover, the catalyst maintains its catalytic stability without noticeable loss of activity after five cycles.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

190-195

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y.W. Han, J.Y. Shen, Y. Chen, Microkinetic analysis of isopropanol dehydrogenation over Cu/SiO2 catalyst, Appl. Catal. A-Gen. 205 (2001) 79-84.

DOI: 10.1016/s0926-860x(00)00559-7

Google Scholar

[2] S.A. El-Molla, Dehydrogenation and condensation in catalytic conversion of iso-propanol over CuO/MgO system doped with Li2O and ZrO2, Appl. Catal. A-Gen. 298 (2006) 103-108.

DOI: 10.3390/ecsoc-9-01475

Google Scholar

[3] S.A. El-Molla, S.M. Abdel-all, M.M. Ibrahim, Influence of precursor of MgO and preparation conditions on the catalytic dehydrogenation of iso-propanol over CuO/MgO catalysts, J. Alloy Comp. 484 (2009) 280-285.

DOI: 10.1016/j.jallcom.2009.04.078

Google Scholar

[4] R.M. Riouxa, M.A. Vannice, Dehydrogenation of isopropyl alcohol on carbon-supported Pt and Cu–Pt catalysts, J. Catal. 233 (2005) 147-165.

DOI: 10.1016/j.jcat.2005.04.020

Google Scholar

[5] O.A. Ibraheem, S.A. El-Mollab, A.I. Ibraheem, M.S. Tarek, Synthesis and characterization of metal oxides loaded-HZSM-5 and their implication for selective conversion of isopropanol, Micro. Meso. Mater. 197 (2014) 48-57.

DOI: 10.1016/j.micromeso.2014.05.039

Google Scholar

[6] J. Davidovits, Synthesis of new high temperature geo-polymers for reinforced plastics/composites, Soci. Plast. Eng. Brookfield Center USA 4 (1979) 151-154.

Google Scholar

[7] J. Davidovits, Geopolymer Chemistry and Applications, third ed., Geopolymer Institute, France, (2011).

Google Scholar

[8] S. Candamano, P. Frontera, A. Macario, F. Crea, Preparation and characterization of active Ni-supported catalyst for syngas production, Chem. Eng. Res. Desi. 96 (2015) 78-86.

DOI: 10.1016/j.cherd.2015.02.011

Google Scholar

[9] S. Alberto, R. Giuseppina, R. Laura, F. Claudio, TiO2-based photocatalytic geopolymers for nitric oxide degradation, Mater. 9 (2016) 513-525.

Google Scholar

[10] S. Sharma, M. Dinesh, S.J. Chen, K.S. Dong, Calcium-modified hierarchically porous aluminosilicate geopolymer as a highly efficient regenerable catalyst for biodiesel production, RSC Adv. 5 (2015) 65454-65461.

DOI: 10.1039/c5ra01823d

Google Scholar

[11] J.L. Bell, P. Sarin, J.L. Provis, R.P. Haggerty, P.E. Driemeyer, P.J. Chupas, D.J. Van, Atomic structure of a cesium aluminosilicate geopolymer: A pair distribution function study, Chem. Mater. 20 (2008) 4768-4776.

DOI: 10.1021/cm703369s

Google Scholar

[12] M.B. Ogundiran S. Kumar, Synthesis and characterization of geopolymer from Nigerian clay, Appl. Clay Sci. 208 (2015) 173-181.

DOI: 10.1016/j.clay.2015.02.022

Google Scholar