A DFT Study of Vanadium Doped Gold Nanoalloy Clusters

Article Preview

Abstract:

The electronic and optical properties of AunV (n=1-8) nanoalloy clusters have been investigated invoking Density Functional Theory (DFT) based descriptors. Conceptual DFT based global descriptors have been used to exhibit experimental properties qualitatively. In this report, the experimental properties of AunV (n=1-8) nanoalloy clusters are correlated in terms of DFT based descriptors viz., HOMO-LUMO energy gap, Hardness, Softness, Electronegativity, Electrophilicity Index and Dipole Moment. The doping of single vanadium atom in gold clusters enhances the stability of gold clusters and also display pronounced odd-even oscillation behaviors. The computed bond length of instant clusters are numerically close with experimental data. The linear regression analysis has been done in terms of correlation between our computed descriptors and their experimental counterparts.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

183-189

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Zabet-Khosousi, A.-A. Dhirani, Charge transport in nanoparticle assemblies, Chem. Rev. 108 (2008) 4072-4124.

DOI: 10.1021/cr0680134

Google Scholar

[2] M. C. Daniel, D. Astruc, Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology, Chem. Rev. 104 (2004) 293-346.

DOI: 10.1021/cr030698+

Google Scholar

[3] S. K. Ghosh, T. Pal, Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications, Chem. Rev. 107 (2007) 4797-4862.

DOI: 10.1021/cr0680282

Google Scholar

[4] R. Ghosh Chaudhuri, S. Paria, Core/shell nanoparticles: Classes, properties, synthesis Mechanisms, characterization, and applications, Chem. Rev. 112 (2012) 2373-2433.

DOI: 10.1021/cr100449n

Google Scholar

[5] A. P. Alivisatos, Semiconductor clusters, nanocrystals, and quantum dots, Science-New series, 271 (1996) 933-937.

DOI: 10.1126/science.271.5251.933

Google Scholar

[6] M. A. Kastner, Artificial Atoms, Phys. Today 46 (1993) 24-31.

Google Scholar

[7] P. Gruene, D. M. Rayner, B. Redlich, A. F. G. van der Meer, J. T. Lyon, G. Meijer, A. Fielicke, Structures of neutral Au7, Au19, and Au20 clusters in the gas phase, Science 321 (2008) 674-676.

DOI: 10.1126/science.1161166

Google Scholar

[8] M. Haruta, Catalysis of gold nanoparticles deposited on metal oxides, Cattech, 6 (2002) 102-115.

Google Scholar

[9] R. Ismail, Theoretical studies of free and supported nanoalloy clusters, Ph.D Thesis (2012) 20-38.

Google Scholar

[10] A. Roucoux, J. Schulz, H. Patin, Reduced transition metal colloids: A novel family of reusable catalysts?, Chem. Rev. 102 (2002) 3757-3778.

DOI: 10.1021/cr010350j

Google Scholar

[11] H. Q. Wang, X. Y. Kuang, H. F. Li, Density functional study of structural and electronic properties of bimetallic copper-gold clusters: comparison with pure and doped gold clusters, Phys. Chem. Chem. Phys. 12 (2010) 5156-5165.

DOI: 10.1039/b923003c

Google Scholar

[12] K. Hansen, A. Herlert, L. Schweikhard, M. Vogel, Dissociation energies of gold clusters AuN+, N=7-27, Phys. Rev. A 73 (2006) 063202.

Google Scholar

[13] L. Hong, H. Wang, J. Cheng, X. Huang, L. Sai, J. Zhao, Atomic structures and electronic properties of small Au-Ag binary clusters: effects of size and composition, Comput. Theor. Chem. 993 (2012) 36-44.

DOI: 10.1016/j.comptc.2012.05.027

Google Scholar

[14] R. M. Olson, M. S. Gordon, Isomers of Au8, J. Chem. Phys. 126 (2007) 214310-1-6.

Google Scholar

[15] P. Weis, O. Welz, E. Vollmer, M. M. Kapes, Structures of mixed gold-silver cluster cations (AgmAun+, m+n<6): Ion mobility measurements and density-functional calculations, J. Chem. Phys. 120 (2004) 677- 684.

DOI: 10.1063/1.1630568

Google Scholar

[16] A. Shayeghi, C. J. Heard, R. L. Johnston, R. Schafer, Optical and electronic properties of mixed Ag-Au tetramer cations, J. Chem. Phys. 140 (2014) 054312-1-9.

DOI: 10.1063/1.4863443

Google Scholar

[17] H. J. Zhai, J. Li, L. S. Wang, Icosahedral gold cage clusters: M@Au12- (M=V, Nb, and Ta), J. Chem. Phys. 121 (2004) 8369-8374.

DOI: 10.1063/1.1799574

Google Scholar

[18] X. Li, B. Kiran, L. F. Cui, L. S. Wang, Magnetic properties in transition-metal-doped gold clusters: M@Au6 (M=Ti, V, Cr), Phys. Rev. Lett. 95 (2005) 253401.

Google Scholar

[19] M. Stener, A. Nardelli, G. Fronzoni, Theoretical study on the photoabsorption of Mau12- (M= V, Nb, and Ta), Chem. Phys. Lett. 462 (2008) 358-364.

Google Scholar

[20] P. V. Nhat, M. T. Nguyen, Trends in sturcutral, electronic and energetic properties of bimetallic vanadiu-gold clusters AunV with n=1-14, Phys. Chem. Chem. Phys. 13 (2011) 16254-16264.

DOI: 10.1039/c1cp22078k

Google Scholar

[21] C. J. Cramer, D. G. Truhlar, Density functional theory for transition metals and transition metal chemistry, Phys. Chem. Chem. Phys. 11 (2009) 10757-10816.

DOI: 10.1039/b907148b

Google Scholar

[22] J. Hafner, C. Wolverton, G. Ceder, Towards computational materials design: the impact of density functional theory of materials research, MRS Bull. 31 (2006) 659-668.

DOI: 10.1557/mrs2006.174

Google Scholar

[23] R. G. Parr, W. Yang, Density functional theory of the electronic structure of molecules, Annu. Rev. Phy. Chem. 46 (1995) 701-728.

DOI: 10.1146/annurev.pc.46.100195.003413

Google Scholar

[24] W. Kohn, A. D. Becke, R. G. Parr, Density functional theory of electronic structure, J. Phys. Chem. 100 (1996) 12974-12980.

DOI: 10.1021/jp960669l

Google Scholar

[25] S. Liu, R. G. Parr, Second-order density-functional description of molecules and chemical changes, J. Chem. Phys. 106 (1997) 5578-5586.

DOI: 10.1063/1.473580

Google Scholar

[26] T. Ziegler, Approximate density functional theory as a practical tool in molecular energetics and dynamics, Chem.Rev. 91 (1991) 651-667.

DOI: 10.1021/cr00005a001

Google Scholar

[27] R. G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules, Oxford University Press, Oxford (1989).

Google Scholar

[28] H. Chermette, Chemical reactivity indexes in density functional theory, J. Comput. Chem. 20 (1999) 129-154.

DOI: 10.1002/(sici)1096-987x(19990115)20:1<129::aid-jcc13>3.0.co;2-a

Google Scholar

[29] P. Geerlings, F. D. Proft, W. Langenaeker, Conceptual density functional theory, Chem. Rev. Washington D.C. 103 (2003) 1793-1874.

DOI: 10.1021/cr990029p

Google Scholar

[30] P. Geerlings, F. D. Proft, Chemical reactivity as described by quantum chemical methods, Int. J. Mol. Sci. 3 (2002) 276-309.

DOI: 10.3390/i3040276

Google Scholar

[31] P. Ranjan, S. Dhail, S. Venigalla, A. Kumar, L. Ledwani, T. Chakraborty, A theoretical analysis of bi-metallic (Cu-Ag)n=1-7 nano alloy clusters invoking DFT based descriptors, Mater. Sci.-Pol. 33 (2015) 719-724.

DOI: 10.1515/msp-2015-0121

Google Scholar

[32] P. Ranjan, S. Venigalla, A. Kumar, T. Chakraborty, Theoretical study of bi-metallic AgmAun (m+n=2-8) nanoa alloy clusters in terms of DFT based descriptors, New Front. Chem. 23 (2014) 111-122.

DOI: 10.1515/msp-2015-0121

Google Scholar

[33] S. Venigalla, S. Dhail, P. Ranjan, S. Jain, T. Chakraborty, Computational study about cytotoxicity of metal odixe nanoparticles invoking nano-QSAR technique, New Front. Chem. 23 (2014) 123-130.

Google Scholar

[34] P. Ranjan, A. Kumar, T. Chakraborty, Computational study of AuSin (n=1-9) nanoalloy clusters invoking DFT based descriptors, AIP Conf. Proc. 1724 (2016) 020072.

DOI: 10.1063/1.4945192

Google Scholar

[35] P. Ranjan, A. Kumar, T. Chakraborty, Theoretical analysis: electronic and optical properties of gold-silicon nanoalloy clusters, Mat. Today Proc. 3 (2016) 1563-1568.

DOI: 10.1016/j.matpr.2016.04.043

Google Scholar

[36] P. Ranjan, A. Kumar, T. Chakraborty, in: G. C. Mishra (Ed.), Computational study of nanomaterials invoking DFT based descriptors, Environmental Sustainability: Concepts, Principles, Evidences and Innovations, Excellent Publishing House, New Delhi, 2014, pp.239-242.

Google Scholar

[37] P. Ranjan, S. Venigalla, A. Kumar, T. Chakraborty, in: T. Chakraborty, L. Ledwani (Eds.), A theoretical study of bi-metallic AgAun (n=1-7) nano alloy clusters invoking DFT based descriptors, Recent Methodology in Chemical Sciences: Experimental and Theoretical Approaches, Apple Academic Press and CRC Press, USA, 2015, pp.337-346.

DOI: 10.1515/msp-2015-0121

Google Scholar

[38] P. Ranjan, A. Kumar, T. Chakraborty, Computational investigation of Ge doped Au nanoalloy clusters: A DFT study, IOP Conf. Series: Mater. Sci. Eng. 149 (2016) 012172.

DOI: 10.1088/1757-899x/149/1/012172

Google Scholar

[39] S. Dhail, P. Ranjan, T. Chakraborty, in: P. Ramasami, M. G. Bhowon, S. J. Laulloo, H. L. K. Wah (Eds.), Correlation of the experimental and theoretical study of some novel-2-phenazinamine derivatives in terms of DFT based descriptors, Crystallizing Ideas- The Role of Chemistry, Springer, Switzerland, 2016, pp.97-112.

DOI: 10.1007/978-3-319-31759-5_7

Google Scholar

[40] P. Ranjan, A. Kumar, T. Chakraborty, in: T. Chakraborty, P. Ranjan, A. Pandey, Theoretical analysis: electronic and optical properties of small Cu-Ag nano alloy clusters, Computational Chemistry Methodology in Structural Biology and Material Sciences, Apple Academic Press and CRC Press, USA (In Press) ISBN- 9781315207544.

DOI: 10.1201/9781315207544-9

Google Scholar

[41] P. Ranjan, T. Chakraborty, A. Kumar, in: A. K. Haghi, L. Pogilani, E. A. Castro, D. Balkose, O. V. Mukbaniani, C. H. Chia, A theoretical study of bimetallic CuAuN (N=1-7) nanoalloy clusters invoking conceptual DFT-based descriptors, Applied Chemistry and Chemical Engineering, Vol. 4, Apple Academic Press and CRC Press, USA (In Press), ISBN- 9781315207636.

DOI: 10.1201/9781315366616-18

Google Scholar

[42] P. Ranjan, T. Chakraborty, A. Kumar, Computational investigation of cationic, anionic and neutral Ag2AuN (N=1-7) nanoalloy clusters, Physical Sciences Reviews (2007) 2365-659X.

DOI: 10.1515/psr-2016-0112

Google Scholar

[43] Gaussian 03, Revision C.02, M. J. Frisch et al., Gaussian Inc., Wallingford CT (2004).

Google Scholar

[44] A. Zupan, P. Blaha, K. Schwarz, J. P. Perdew, Pressure-induced phase transitions in solid Si, SiO2, and Fe: performance of local-spin-density and genetalized-gradient-approximation density functional, Phys. Rev. B 58 (1998) 11266-11272.

DOI: 10.1103/physrevb.58.11266

Google Scholar

[45] J. Theilhaber, Quantum-molecular-dynamics simulations of liquid metals and highly degenrate plasmas, Phys. Fluids B 4 (1992) 2044-(2051).

DOI: 10.1063/1.860013

Google Scholar

[46] R. Stadler, M. J. Gillan, First-principle molecular dynamics studies of liquid tellurium, J. Phys.: Condens. Matter 12 (2000) 6053-6061.

DOI: 10.1088/0953-8984/12/28/304

Google Scholar

[47] N. Argaman, G. Makov, Density functional theory: An introduction, Am. J. Phys.: Condens. Matter 68 (2000) 69-79.

Google Scholar

[48] B. Assadollahzadeh, P. Schwerdtfeger, A systematic search for minimum structures of small gold clusters Aun (n=2-20) and their electronic properties, J. Chem. Phys. 131 (2009) 064306.

DOI: 10.1063/1.3204488

Google Scholar

[49] S. Chiodo, N. Russo, E. Sicilia, LANl2DZ basis sets recontracted in the framework of density functional theory, J. Chem. Phys. 125 (2006) 104-107.

DOI: 10.1063/1.2345197

Google Scholar

[50] Z. Y. Jiang, K. H. Lee, S. T Li, S. Y. Chu, Structures and charge distributions of cationic and neutral Cun-1Ag clusters (n=2-8), Phys. Rev B 73 (2006) 235423.

Google Scholar

[51] B. Mielich, A. Savin, H. Stoll, H. Preuss, Results obtained with the correlation energy density functional of Becke and Lee, Yand and Parr, Chem. Phys. Lett. 157 (1989) 200-206.

DOI: 10.1016/0009-2614(89)87234-3

Google Scholar

[52] H. Xiao, J. T. Kheli, W. A. Goddard III, Accurate band gaps for semiconductors from density fucntional theory, J. Phys. Chem. Lett. 2 (2011) 212-217.

DOI: 10.1021/jz101565j

Google Scholar

[53] D. L. Ping; K. X. Yu, S. Peng, Z. Y. Ru, L. Y. Fang, A comparative study of geometries, stabilities and electronic properties between bimetallic AgnX (X=Au, Cu; n=1-8) and pure silver clusters, Chinese Phys B. 21 (2012) 043601-13.

DOI: 10.1088/1674-1056/21/4/043601

Google Scholar

[54] H. Hakkinen, U. Landman, "Gold clusters (AuN, 2≤N≤10) and their anions, Phys. Rev. 62 (2000) 2287-2290.

Google Scholar

[55] X. B. Li, H. Y. Wang, X. D. Yang, Z. H. Zhu, Y. J. Tang, Size dependence of the structures and energetic and electronic properties of gold clusters, J. Chem. Phys. 126 (2007) 084505.

DOI: 10.1063/1.2434779

Google Scholar