[1]
A. Zabet-Khosousi, A.-A. Dhirani, Charge transport in nanoparticle assemblies, Chem. Rev. 108 (2008) 4072-4124.
DOI: 10.1021/cr0680134
Google Scholar
[2]
M. C. Daniel, D. Astruc, Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology, Chem. Rev. 104 (2004) 293-346.
DOI: 10.1021/cr030698+
Google Scholar
[3]
S. K. Ghosh, T. Pal, Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications, Chem. Rev. 107 (2007) 4797-4862.
DOI: 10.1021/cr0680282
Google Scholar
[4]
R. Ghosh Chaudhuri, S. Paria, Core/shell nanoparticles: Classes, properties, synthesis Mechanisms, characterization, and applications, Chem. Rev. 112 (2012) 2373-2433.
DOI: 10.1021/cr100449n
Google Scholar
[5]
A. P. Alivisatos, Semiconductor clusters, nanocrystals, and quantum dots, Science-New series, 271 (1996) 933-937.
DOI: 10.1126/science.271.5251.933
Google Scholar
[6]
M. A. Kastner, Artificial Atoms, Phys. Today 46 (1993) 24-31.
Google Scholar
[7]
P. Gruene, D. M. Rayner, B. Redlich, A. F. G. van der Meer, J. T. Lyon, G. Meijer, A. Fielicke, Structures of neutral Au7, Au19, and Au20 clusters in the gas phase, Science 321 (2008) 674-676.
DOI: 10.1126/science.1161166
Google Scholar
[8]
M. Haruta, Catalysis of gold nanoparticles deposited on metal oxides, Cattech, 6 (2002) 102-115.
Google Scholar
[9]
R. Ismail, Theoretical studies of free and supported nanoalloy clusters, Ph.D Thesis (2012) 20-38.
Google Scholar
[10]
A. Roucoux, J. Schulz, H. Patin, Reduced transition metal colloids: A novel family of reusable catalysts?, Chem. Rev. 102 (2002) 3757-3778.
DOI: 10.1021/cr010350j
Google Scholar
[11]
H. Q. Wang, X. Y. Kuang, H. F. Li, Density functional study of structural and electronic properties of bimetallic copper-gold clusters: comparison with pure and doped gold clusters, Phys. Chem. Chem. Phys. 12 (2010) 5156-5165.
DOI: 10.1039/b923003c
Google Scholar
[12]
K. Hansen, A. Herlert, L. Schweikhard, M. Vogel, Dissociation energies of gold clusters AuN+, N=7-27, Phys. Rev. A 73 (2006) 063202.
Google Scholar
[13]
L. Hong, H. Wang, J. Cheng, X. Huang, L. Sai, J. Zhao, Atomic structures and electronic properties of small Au-Ag binary clusters: effects of size and composition, Comput. Theor. Chem. 993 (2012) 36-44.
DOI: 10.1016/j.comptc.2012.05.027
Google Scholar
[14]
R. M. Olson, M. S. Gordon, Isomers of Au8, J. Chem. Phys. 126 (2007) 214310-1-6.
Google Scholar
[15]
P. Weis, O. Welz, E. Vollmer, M. M. Kapes, Structures of mixed gold-silver cluster cations (AgmAun+, m+n<6): Ion mobility measurements and density-functional calculations, J. Chem. Phys. 120 (2004) 677- 684.
DOI: 10.1063/1.1630568
Google Scholar
[16]
A. Shayeghi, C. J. Heard, R. L. Johnston, R. Schafer, Optical and electronic properties of mixed Ag-Au tetramer cations, J. Chem. Phys. 140 (2014) 054312-1-9.
DOI: 10.1063/1.4863443
Google Scholar
[17]
H. J. Zhai, J. Li, L. S. Wang, Icosahedral gold cage clusters: M@Au12- (M=V, Nb, and Ta), J. Chem. Phys. 121 (2004) 8369-8374.
DOI: 10.1063/1.1799574
Google Scholar
[18]
X. Li, B. Kiran, L. F. Cui, L. S. Wang, Magnetic properties in transition-metal-doped gold clusters: M@Au6 (M=Ti, V, Cr), Phys. Rev. Lett. 95 (2005) 253401.
Google Scholar
[19]
M. Stener, A. Nardelli, G. Fronzoni, Theoretical study on the photoabsorption of Mau12- (M= V, Nb, and Ta), Chem. Phys. Lett. 462 (2008) 358-364.
Google Scholar
[20]
P. V. Nhat, M. T. Nguyen, Trends in sturcutral, electronic and energetic properties of bimetallic vanadiu-gold clusters AunV with n=1-14, Phys. Chem. Chem. Phys. 13 (2011) 16254-16264.
DOI: 10.1039/c1cp22078k
Google Scholar
[21]
C. J. Cramer, D. G. Truhlar, Density functional theory for transition metals and transition metal chemistry, Phys. Chem. Chem. Phys. 11 (2009) 10757-10816.
DOI: 10.1039/b907148b
Google Scholar
[22]
J. Hafner, C. Wolverton, G. Ceder, Towards computational materials design: the impact of density functional theory of materials research, MRS Bull. 31 (2006) 659-668.
DOI: 10.1557/mrs2006.174
Google Scholar
[23]
R. G. Parr, W. Yang, Density functional theory of the electronic structure of molecules, Annu. Rev. Phy. Chem. 46 (1995) 701-728.
DOI: 10.1146/annurev.pc.46.100195.003413
Google Scholar
[24]
W. Kohn, A. D. Becke, R. G. Parr, Density functional theory of electronic structure, J. Phys. Chem. 100 (1996) 12974-12980.
DOI: 10.1021/jp960669l
Google Scholar
[25]
S. Liu, R. G. Parr, Second-order density-functional description of molecules and chemical changes, J. Chem. Phys. 106 (1997) 5578-5586.
DOI: 10.1063/1.473580
Google Scholar
[26]
T. Ziegler, Approximate density functional theory as a practical tool in molecular energetics and dynamics, Chem.Rev. 91 (1991) 651-667.
DOI: 10.1021/cr00005a001
Google Scholar
[27]
R. G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules, Oxford University Press, Oxford (1989).
Google Scholar
[28]
H. Chermette, Chemical reactivity indexes in density functional theory, J. Comput. Chem. 20 (1999) 129-154.
DOI: 10.1002/(sici)1096-987x(19990115)20:1<129::aid-jcc13>3.0.co;2-a
Google Scholar
[29]
P. Geerlings, F. D. Proft, W. Langenaeker, Conceptual density functional theory, Chem. Rev. Washington D.C. 103 (2003) 1793-1874.
DOI: 10.1021/cr990029p
Google Scholar
[30]
P. Geerlings, F. D. Proft, Chemical reactivity as described by quantum chemical methods, Int. J. Mol. Sci. 3 (2002) 276-309.
DOI: 10.3390/i3040276
Google Scholar
[31]
P. Ranjan, S. Dhail, S. Venigalla, A. Kumar, L. Ledwani, T. Chakraborty, A theoretical analysis of bi-metallic (Cu-Ag)n=1-7 nano alloy clusters invoking DFT based descriptors, Mater. Sci.-Pol. 33 (2015) 719-724.
DOI: 10.1515/msp-2015-0121
Google Scholar
[32]
P. Ranjan, S. Venigalla, A. Kumar, T. Chakraborty, Theoretical study of bi-metallic AgmAun (m+n=2-8) nanoa alloy clusters in terms of DFT based descriptors, New Front. Chem. 23 (2014) 111-122.
DOI: 10.1515/msp-2015-0121
Google Scholar
[33]
S. Venigalla, S. Dhail, P. Ranjan, S. Jain, T. Chakraborty, Computational study about cytotoxicity of metal odixe nanoparticles invoking nano-QSAR technique, New Front. Chem. 23 (2014) 123-130.
Google Scholar
[34]
P. Ranjan, A. Kumar, T. Chakraborty, Computational study of AuSin (n=1-9) nanoalloy clusters invoking DFT based descriptors, AIP Conf. Proc. 1724 (2016) 020072.
DOI: 10.1063/1.4945192
Google Scholar
[35]
P. Ranjan, A. Kumar, T. Chakraborty, Theoretical analysis: electronic and optical properties of gold-silicon nanoalloy clusters, Mat. Today Proc. 3 (2016) 1563-1568.
DOI: 10.1016/j.matpr.2016.04.043
Google Scholar
[36]
P. Ranjan, A. Kumar, T. Chakraborty, in: G. C. Mishra (Ed.), Computational study of nanomaterials invoking DFT based descriptors, Environmental Sustainability: Concepts, Principles, Evidences and Innovations, Excellent Publishing House, New Delhi, 2014, pp.239-242.
Google Scholar
[37]
P. Ranjan, S. Venigalla, A. Kumar, T. Chakraborty, in: T. Chakraborty, L. Ledwani (Eds.), A theoretical study of bi-metallic AgAun (n=1-7) nano alloy clusters invoking DFT based descriptors, Recent Methodology in Chemical Sciences: Experimental and Theoretical Approaches, Apple Academic Press and CRC Press, USA, 2015, pp.337-346.
DOI: 10.1515/msp-2015-0121
Google Scholar
[38]
P. Ranjan, A. Kumar, T. Chakraborty, Computational investigation of Ge doped Au nanoalloy clusters: A DFT study, IOP Conf. Series: Mater. Sci. Eng. 149 (2016) 012172.
DOI: 10.1088/1757-899x/149/1/012172
Google Scholar
[39]
S. Dhail, P. Ranjan, T. Chakraborty, in: P. Ramasami, M. G. Bhowon, S. J. Laulloo, H. L. K. Wah (Eds.), Correlation of the experimental and theoretical study of some novel-2-phenazinamine derivatives in terms of DFT based descriptors, Crystallizing Ideas- The Role of Chemistry, Springer, Switzerland, 2016, pp.97-112.
DOI: 10.1007/978-3-319-31759-5_7
Google Scholar
[40]
P. Ranjan, A. Kumar, T. Chakraborty, in: T. Chakraborty, P. Ranjan, A. Pandey, Theoretical analysis: electronic and optical properties of small Cu-Ag nano alloy clusters, Computational Chemistry Methodology in Structural Biology and Material Sciences, Apple Academic Press and CRC Press, USA (In Press) ISBN- 9781315207544.
DOI: 10.1201/9781315207544-9
Google Scholar
[41]
P. Ranjan, T. Chakraborty, A. Kumar, in: A. K. Haghi, L. Pogilani, E. A. Castro, D. Balkose, O. V. Mukbaniani, C. H. Chia, A theoretical study of bimetallic CuAuN (N=1-7) nanoalloy clusters invoking conceptual DFT-based descriptors, Applied Chemistry and Chemical Engineering, Vol. 4, Apple Academic Press and CRC Press, USA (In Press), ISBN- 9781315207636.
DOI: 10.1201/9781315366616-18
Google Scholar
[42]
P. Ranjan, T. Chakraborty, A. Kumar, Computational investigation of cationic, anionic and neutral Ag2AuN (N=1-7) nanoalloy clusters, Physical Sciences Reviews (2007) 2365-659X.
DOI: 10.1515/psr-2016-0112
Google Scholar
[43]
Gaussian 03, Revision C.02, M. J. Frisch et al., Gaussian Inc., Wallingford CT (2004).
Google Scholar
[44]
A. Zupan, P. Blaha, K. Schwarz, J. P. Perdew, Pressure-induced phase transitions in solid Si, SiO2, and Fe: performance of local-spin-density and genetalized-gradient-approximation density functional, Phys. Rev. B 58 (1998) 11266-11272.
DOI: 10.1103/physrevb.58.11266
Google Scholar
[45]
J. Theilhaber, Quantum-molecular-dynamics simulations of liquid metals and highly degenrate plasmas, Phys. Fluids B 4 (1992) 2044-(2051).
DOI: 10.1063/1.860013
Google Scholar
[46]
R. Stadler, M. J. Gillan, First-principle molecular dynamics studies of liquid tellurium, J. Phys.: Condens. Matter 12 (2000) 6053-6061.
DOI: 10.1088/0953-8984/12/28/304
Google Scholar
[47]
N. Argaman, G. Makov, Density functional theory: An introduction, Am. J. Phys.: Condens. Matter 68 (2000) 69-79.
Google Scholar
[48]
B. Assadollahzadeh, P. Schwerdtfeger, A systematic search for minimum structures of small gold clusters Aun (n=2-20) and their electronic properties, J. Chem. Phys. 131 (2009) 064306.
DOI: 10.1063/1.3204488
Google Scholar
[49]
S. Chiodo, N. Russo, E. Sicilia, LANl2DZ basis sets recontracted in the framework of density functional theory, J. Chem. Phys. 125 (2006) 104-107.
DOI: 10.1063/1.2345197
Google Scholar
[50]
Z. Y. Jiang, K. H. Lee, S. T Li, S. Y. Chu, Structures and charge distributions of cationic and neutral Cun-1Ag clusters (n=2-8), Phys. Rev B 73 (2006) 235423.
Google Scholar
[51]
B. Mielich, A. Savin, H. Stoll, H. Preuss, Results obtained with the correlation energy density functional of Becke and Lee, Yand and Parr, Chem. Phys. Lett. 157 (1989) 200-206.
DOI: 10.1016/0009-2614(89)87234-3
Google Scholar
[52]
H. Xiao, J. T. Kheli, W. A. Goddard III, Accurate band gaps for semiconductors from density fucntional theory, J. Phys. Chem. Lett. 2 (2011) 212-217.
DOI: 10.1021/jz101565j
Google Scholar
[53]
D. L. Ping; K. X. Yu, S. Peng, Z. Y. Ru, L. Y. Fang, A comparative study of geometries, stabilities and electronic properties between bimetallic AgnX (X=Au, Cu; n=1-8) and pure silver clusters, Chinese Phys B. 21 (2012) 043601-13.
DOI: 10.1088/1674-1056/21/4/043601
Google Scholar
[54]
H. Hakkinen, U. Landman, "Gold clusters (AuN, 2≤N≤10) and their anions, Phys. Rev. 62 (2000) 2287-2290.
Google Scholar
[55]
X. B. Li, H. Y. Wang, X. D. Yang, Z. H. Zhu, Y. J. Tang, Size dependence of the structures and energetic and electronic properties of gold clusters, J. Chem. Phys. 126 (2007) 084505.
DOI: 10.1063/1.2434779
Google Scholar