Flexural Strength and Viscoelastic Properties of Acrylic Resin Denture Base Material Containing Silver Nanoparticle Synthesized from Fingerroot Aqueous Extract

Article Preview

Abstract:

Silver nanoparticle (AgNP) synthesized using aqueous extract of Fingerroot (Boesenbergia rotunda) as reducing and stabilizing agent was incorporated in heat cured acrylic resin PMMA with different concentrations (i.e. 0, 0.025, 0.05, 0.075 and 0.1 wt.%). Flexural strength of AgNP/PMMA denture base was investigated with three-point bending method using Universal tensile tester. Viscoelastic behavior of filled PMMA was studied using the dynamic mechanical analyzer (DMA) over a wide range of frequencies. The flexural strength of AgNP filled acrylic denture base materials were not statistically significantly different with the increase in concentrations of AgNP. The dynamic mechanical analysis showed the frequency dependence of storage modulus (G'), loss modulus (G"), and damping factor (tanδ).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

178-182

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L.S. Acosta-Torres, I. Mendieta, R.E. Nuñez-Anita, M. Cajero-Juárez, V.M. Castaño, Cytocompatible antifungal acrylic resin containing silver nanoparticles for dentures, Int. J. Nanomed. 7 (2012) 4777-4786.

DOI: 10.2147/ijn.s32391

Google Scholar

[2] K.-Y. Nam, C.-H. Lee, C.-J. Lee, Antifungal and physical characteristics of modified denture base acrylic incorporated with silver nanoparticles, Gerodontology 29(2) (2012) e413-e419.

DOI: 10.1111/j.1741-2358.2011.00489.x

Google Scholar

[3] A. Sodagar, M.Z. Kassaee, A. Akhavan, N. Javadi, S. Arab, M.J. Kharazifard, Effect of silver nano particles on flexural strength of acrylic resins, J Prosthodont Res. 56(2) (2012) 120-124.

DOI: 10.1016/j.jpor.2011.06.002

Google Scholar

[4] H.F. Jenkinson, H.C. Lala, M.G. Shepherd, Coaggregation of Streptococcus sanguis and other streptococci with Candida albicans, Infect. Immun. 58(5) (1990) 1429-1436.

DOI: 10.1128/iai.58.5.1429-1436.1990

Google Scholar

[5] N.J. Grimaudo, W.E. Nesbitt, W.B. Clark, Coaggregation of Candida albicans oral Actinomyces species, Oral Microbiol. Immunol. 11(1) (1996) 59-61.

DOI: 10.1111/j.1399-302x.1996.tb00337.x

Google Scholar

[6] S. Charone, M.B. Portela, M.S. das Chagas, R.M. de Araújo Soares, G.F.B. de Araújo Castro, Biofilm of Candida albicans from oral cavity of an HIV-infected child: challenge on enamel microhardness, Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 115(4) (2013).

DOI: 10.1016/j.oooo.2012.11.003

Google Scholar

[7] H.F. Oliveira Paranhos, C.H. Silva-Lovato, R.F. De Souza, P.C. Cruz, K.M. De Freitas-Pontes, E. Watanabe, I.Y. Ito, Effect of three methods for cleaning dentures on biofilms formed in vitro on acrylic resin, J. Prosthodontics 18(5) (2009) 427-431.

DOI: 10.1111/j.1532-849x.2009.00450.x

Google Scholar

[8] C.R. Pusateri, E.A. Monaco, M. Edgerton, Sensitivity of Candida albicans biofilm cells grown on denture acrylic to antifungal proteins and chlorhexidine, Arch. Oral Biol. 54(6) (2009) 588-594.

DOI: 10.1016/j.archoralbio.2009.01.016

Google Scholar

[9] X. Li, H. Xu, Z.-S. Chen, G. Chen, Biosynthesis of Nanoparticles by Microorganisms and Their Applications, J. Nanomater. 2011 (2011) 16.

Google Scholar

[10] K. Govindaraju, S. Tamilselvan, V. Kiruthiga, G. Singaravelu, Biogenic silver nanoparticles by Solanum torvum and their promising antimicrobial activity, J. Biopestic. 3(1 SPEC.ISSUE) (2010) 394-399.

Google Scholar

[11] N. Roy, A. Barik, Green synthesis of silver nanoparticles from the unexploited weed resources, Int. J. Nanotechnol. 4(2) (2010) 95-101.

Google Scholar

[12] T. Eng-Chong, L. Yean-Kee, C. Chin-Fei, H. Choon-Han, W. Sher-Ming, C.T. Li-Ping, F. Gen-Teck, N. Khalid, N. Abd Rahman, S.A. Karsani, S. Othman, R. Othman, R. Yusof, Boesenbergia rotunda: From ethnomedicine to drug discovery, J. Evidence-Based Complementary Altern. Med. 2012 (2012).

DOI: 10.1155/2012/473637

Google Scholar

[13] T. Ghaffari, F. Hamedirad, B. Ezzati, In Vitro Comparison of Compressive and Tensile Strengths ofAcrylic Resins Reinforced by Silver Nanoparticles at 2% and0.2% Concentrations, J Dent Res Dent Clin Dent Prospects 8(4) (2014) 204-209.

Google Scholar

[14] A.P.R.K. Alla, K.N. Raghavendra Swamy, R. Vyas, A. Konakanchi, V. Guduri, P. Gadde, Influence of Silver Nanoparticles Incorporation on Flexural Strength of Heat-cure Acrylic Denture Base Resin Materials, (2017).

DOI: 10.9734/arrb/2017/36581

Google Scholar

[15] K. Shimoyama, T. Uchida, M. Nagao, Y. Shirasaki, Dynamic viscoelastic properties of models composed of posterior denture teeth and denture base resin, J. Evol. Med. Dent. Sci. 45(2) (1998) 117-21.

Google Scholar

[16] H.Z. Mahross, K. Baroudi, Effect of silver nanoparticles incorporation on viscoelastic properties of acrylic resin denture base material, Eur J Dent 9(2) (2015) 207-212.

DOI: 10.4103/1305-7456.156821

Google Scholar

[17] S. Gurunathan, Rapid biological synthesis of silver nanoparticles and their enhanced antibacterial effects against Escherichia fergusonii and Streptococcus mutans, Arabian J. Chem. (2014).

DOI: 10.1016/j.arabjc.2014.11.014

Google Scholar

[18] J.M. Correa, M. Mori, H.L. Sanches, A.D. da Cruz, E. Poiate, Jr., I.A. Poiate, Silver Nanoparticles in Dental Biomaterials, Int. J. Biomater. 2015 (2015) 9.

DOI: 10.1155/2015/485275

Google Scholar

[19] M.Z. Kassaee, M. Mohammadkhani, A. Akhavan, R. Mohammadi, In situ formation of silver nanoparticles in PMMA via reduction of silver ions by butylated hydroxytoluene, Struct. Chem. 22(1) (2011) 11-15.

DOI: 10.1007/s11224-010-9671-1

Google Scholar