Printed PZT Thick Films Implemented for Functionalized Gas Sensors

Article Preview

Abstract:

Attractive for MEMS, PZT thick films are often microstructured on Si supporting platforms to span the gap between ceramics and thin film technologies. Printing process might lead to lower cost than ceramic process to open routes for MEMS applications. In this paper processing by screen-printing of Au/PZT/Au thick-films supported on alumina or completely released from the substrate are described. Investigations of the film microstructures nevertheless show lower densification than those of bulk ceramics. Prior to selective coating deposition, routes to improve the reduction of the film’s porosity are proposed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

158-162

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Glynne-Jones, SP Beeby, NM White, Towards a piezoelectric vibration-powered microgenerator,, Proc.Sci. Meas. Technol. 148, 68–72 (2001).

DOI: 10.1049/ip-smt:20010323

Google Scholar

[2] R. Xu, A. Lei, C. Dahl-Petersen, K. Hansen, M. Guizzetti, K. Birkelund, E.V. Thomsen, O. Hansen, Screen printed PZT/PZT thick film bimorph MEMS cantilever device for vibration energy harvesting,, Sensors and Actuators A. 188, 383– 388 (2012).

DOI: 10.1016/j.sna.2011.12.035

Google Scholar

[3] N. White and JD Turner, Thick-film sensors: past, present and future,, Meas. Sci. Technol. 8, 1-20 (1997).

DOI: 10.1088/0957-0233/8/1/002

Google Scholar

[4] R. Lakhmi, H. Debéda, I. Dufour, C. Lucat and M. Maglione, Study of screen-printed PZT cantilevers both self-actuated and self-read-out,, International Journal of Applied Ceramic Technology. 11, 311-320 (2014).

DOI: 10.1111/ijac.12006

Google Scholar

[5] H. Debéda, P.Clément, E. Llobet and C. Lucat, One-step firing for electroded PZT thick-films applied to MEMS,, Smart Mater, (2015).

DOI: 10.1088/0964-1726/24/2/025020

Google Scholar

[6] H. Debéda, M-I Rua Taborda, S. Zarabi, D.Nairn, L.Wei, A. Salehian, Printed MEMS-based self–contained piezoelectric-based monitoring device for smart grids,, Powermems 2017, Kanazawa, Japan. (2017).

DOI: 10.1088/1742-6596/1052/1/012111

Google Scholar

[7] H. Debéda, C. Lucat, V. Budinger-Pommier; Printed piezoelectric materials for vibration-based damage detection,, Procedings Engineering /j.proeng. 11.254 (2016).

DOI: 10.1016/j.proeng.2016.11.254

Google Scholar

[8] P. Clément E. Perez, O. Gonzalez, R. Calavia, C. Lucat, E. Llobet and H. Debéda, Sensors and Actuators B: Chemical, 237, 1056–106 (2016).

DOI: 10.1016/j.snb.2016.07.163

Google Scholar

[9] A. Hulanicki, S. Glab and F. Ingman, Chemical sensors definitions and classification,, Pure and Applied Chemistry, 63(9) 1247-1250 (1991).

DOI: 10.1351/pac199163091247

Google Scholar

[10] Y. Chu, H. Kim, K. Song, Y. Shul, K. Jung, K. Lee and M. Han, Preparation of mesoporous silica fiber matrix for VOC removal,, Catalysis Today.74(3) 249-256 (2002).

DOI: 10.1016/s0920-5861(02)00028-7

Google Scholar

[11] E. Magner, Immobilisation of enzymes on mesoporous silicate materials,, Chem. Soc. Rev., 2, 6213-6222 (2013).

DOI: 10.1039/c2cs35450k

Google Scholar

[12] N. Zucchetto, M. J. Reber, L. Pestalozzi, R. Schmid, A. Neels, D. Brühwiler, The structure of mesoporous silica obtained by pseudomorphic transformation of SBA-15 and SBA-16, , Microporous and mesoporous materials 257, 232-240 (2018).

DOI: 10.1016/j.micromeso.2017.08.046

Google Scholar

[13] L. Wei, Y. Zhao, Y. Zhang, C. Liu, J. Hong, H. Xiong, J. Li, Fischer–Tropsch synthesis over a 3D foamed MCF silica support: Toward a more open porous network of cobalt catalysts,, Journal of Catalysis 340, 205-218 (2016).

DOI: 10.1016/j.jcat.2016.04.019

Google Scholar