[1]
Liu Z, Zhang M, Bhandari B, et al. 3D printing: Printing precision and application in food sector[J]. Trends in Food Science & Technology. 2017, 69: 83-94.
DOI: 10.1016/j.tifs.2017.08.018
Google Scholar
[2]
Wang X, Jiang M, Zhou Z, et al. 3D printing of polymer matrix composites: A review and prospective[J]. Composites Part B Engineering. 2017, 110: 442-458.
DOI: 10.1016/j.compositesb.2016.11.034
Google Scholar
[3]
Jakus A E, Shah R N. Multi- and mixed 3D-printing of graphene-hydroxyapatite hybrid materials for complex tissue engineering.[J]. Journal of Biomedical Materials Research Part A. 2017, 105(1): 274.
DOI: 10.1002/jbm.a.35684
Google Scholar
[4]
C. X. F Lam X M M S. Scaffold development using 3D printing with a starch-based polymer[J]. In Materials Science and Engineering. 2002, 20: 49-56.
DOI: 10.1016/s0928-4931(02)00012-7
Google Scholar
[5]
Medrano Sandonas L, Landauro C V. Disorder-induced metal-insulator transition in cooled silver and copper nanoparticles: A statistical study[J]. Chemical Physics Letters. 2017, 681: 22-28.
DOI: 10.1016/j.cplett.2017.05.048
Google Scholar
[6]
Chu Guang Tang Yongjian Liu Wei Luo Jiangshan Li Jun. Preparation and application of nano-copper powder [J]. Metallic Functional Materials. 2005 (03): 18-21.
Google Scholar
[7]
Nisha Kant Ojha G V Z A. Copper nanoparticles as inexpensive and efficient catalyst: A valuable contribution in organic synthesis[J]. Coordination Chemistry Reviews. 2017(353): 1-57.
DOI: 10.1016/j.ccr.2017.10.004
Google Scholar
[8]
Yang Qiyun, Wu Yudao, Zhong Shouliang.Study on the Characteristics of Metallic Powder for 3D Printing [Z] .Wuhan: 2015143-147.
Google Scholar
[9]
Mishra S S S H. Ligand-free reusable nano copper oxide-catalyzed synthesis of 3-amino-1,4-diynes[J]. RSC Advances. 2015, 5(111): 91326-91329.
DOI: 10.1039/c5ra18350b
Google Scholar
[10]
Yin M W C K. Copper oxide nanocrystals[J]. Journal of the American Chemical Society. 2005, 26(127): 9506-9511.
Google Scholar
[11]
Ranu B C S A. Microwave-assisted simple and efficient ligand free copper nanoparticle catalyzed aryl-sulfur bond formation[J]. Advanced Synthesis and Catalysis. 2007, 17-18(349): 2690-2696.
DOI: 10.1002/adsc.200700289
Google Scholar
[12]
Paul S P G D. Three-component synthesis of a polysubstituted pyrrole core containing heterocyclic scaffolds over magnetically separable nanocrystalline copper ferrite[J]. RSC Advances. 2013, 23(3): 8637-8644.
DOI: 10.1039/c3ra40571k
Google Scholar
[13]
Halada K, Suga H. Theoretical investigation on parameters of cetrifugal atomization of metal powder.[J]. Journal of the Japan Society of Powder & Powder Metallurgy. 2010, 37(4): 492-499.
DOI: 10.2497/jjspm.37.492
Google Scholar
[14]
Cui J H, Goh J S, Park S Y, et al. Preparation and physical characterization of alginate microparticles using air atomization method[J]. Drug Development & Industrial Pharmacy. 2001, 27(4): 309.
DOI: 10.1081/ddc-100103730
Google Scholar
[15]
Feng Y, Qiu T. Preparation, characterization and microwave absorbing properties of FeNi alloy prepared by gas atomization method[J]. Journal of Alloys & Compounds. 2012, 513(3): 455-459.
DOI: 10.1016/j.jallcom.2011.10.079
Google Scholar
[16]
Ye Shanshan, Zhang Peicong, Qiu Kehui, et al.Key technology and development trend of aerosolized metal spherical powder for 3D printing [J] .China Nonferrous Metals. 2017 (2): 51-54.
Google Scholar
[17]
Wang Jinrui, Dong Mei. A method of water atomized spherical metal powder [P]. 2012-10-10.
Google Scholar
[18]
Zhu Shengli. A suitable shape printing copper powder for 3D printing, its preparation and application [P]. 2014-05-21.
Google Scholar
[19]
Li Hui-yun. A method for preparing low reflectance spherical copper powder for 3D printing [P]. 2017-05-10.
Google Scholar
[20]
Ye Nanmin. Novel Preparation and Application of Nanometer Copper Powder [D] .Hefei University of Technology, (2015).
Google Scholar
[21]
Xie Zhongya, Xu Jiansheng. Preparation of Nano-metallic Copper Particles by High-energy Ball Milling Process [J]. Lubrication and Sealing. 2006 (3): 126-128.
Google Scholar
[22]
Li Huizhi, Zhang Peizhi, Xu Chongjuan. Preparation of a 3D printing inorganic powder molding material [P].Baláž P, Godočíková E, Kril Ová L, et al. Preparation of nanocrystalline materials by high-energy milling[J]. Materials Science & Engineering A. 2004, 386(1): 442-446.
DOI: 10.1016/j.msea.2004.07.043
Google Scholar
[23]
Ding J, Tsuzuki T, Mccormick P G, et al. Ultrafine Cu Particles Prepared by Mechanochemical Process[J]. Journal of Alloys & Compounds. 1996, 234(2): L1-L3.
DOI: 10.1016/0925-8388(95)02138-8
Google Scholar
[24]
Song Wenxu, Zhang Xiumei, Yang Haibin, et al. Preparation of metal Cu nanopowders by electric explosion [J] .Powder Metal Industry. 2009, 19 (6): 18-20.
Google Scholar
[25]
Mao Zhiguo. Electrical explosion wire prepared nano-powder [D]. Tsinghua University, (2009).
Google Scholar
[26]
A D F. Method of obtaining ultra-dispersive copper powder by supplying copper nitrate solution into nitrogen plasma[J]. Russ. 1996(7): 271.
Google Scholar
[27]
Lee H, Park S H, Seo S G, et al. Preparation and Characterization of Copper Nanoparticles via the Liquid Phase Plasma Method[J]. Current Nanoscience. 2014, 10(1): 421-431.
Google Scholar
[28]
Kumar R T, Suresh P, Selvam N C S, et al. Comparative study of nano copper aluminate spinel prepared by sol–gel and modified sol–gel techniques: Structural, electrical, optical and catalytic studies[J]. Journal of Alloys & Compounds. 2012, 522(5): 39-45.
DOI: 10.1016/j.jallcom.2012.01.064
Google Scholar
[29]
Zayyoun N, Bahmad L, Laânab L, et al. The effect of pH on the synthesis of stable Cu 2 O/CuO nanoparticles by sol–gel method in a glycolic medium[J]. Applied Physics A. 2016, 122(5): 1-6.
DOI: 10.1007/s00339-016-0024-9
Google Scholar
[30]
Chen Zuyao, Chen Bo, QianYitai, et al. Preparation of ultrafine metal particles by γ-ray irradiation-hydrothermal crystallization method[J]. Journal of metal. 1992, 28(4): 73-76.
Google Scholar
[31]
Kassim M, Sahan, Dumbous H I, et al. Preparation CuO and CuCO 3 Cu (OH) 2 Crystal Nano Particles by Using Microemulsion Method[J]. (2012).
Google Scholar
[32]
Solanki J N, Sengupta R, Murthy Z V P. Synthesis of copper sulphide and copper nanoparticles with microemulsion method[J]. Solid State Sciences. 2010, 12(9): 1560-1566.
DOI: 10.1016/j.solidstatesciences.2010.06.021
Google Scholar