Methodology of Technological Adaptation Applied to Powder Rolling

Abstract:

Article Preview

Powder rolling is used for manufacturing long-length strip. For obtaining the product with high green density it is necessary to ensure shear strain in the deformation zone. Based on the principles of technologic adaptation the dual roll closed caliber with adaptively changed rigidity was constructed. It consists of upper bandage with shoulder, bottom bandage with groove in which the set of three rings (two aside and one central) is located. The pass is arranged by aside rings and outside surface of the central ring forming closed caliber while interacting with the shoulder of the upper bandage. The caliber output is equal to zero and the broadening at rolling is fully excluded. Such construction of the tool makes it possible to achieve high level of hydrostatic stress of tensor simultaneously with intensification of shear strains resulting in practically nonporous rolled strip. Taking into consideration peculiarities of calibre rolling the new criterion was proposed. This criterion enables to characterize roll system for each material, incompact materials in particular, considering retraction ability, to assess and identify the final square of the rolled material at different caliber configuration. Dependence of maximum value of powdered rolled strip thickness on dual roll closed caliber retraction surface value at different rolled strip width is presented.

Info:

Periodical:

Edited by:

Marina Polyakova

Pages:

174-180

Citation:

M. Polyakova and E. Golubchik, "Methodology of Technological Adaptation Applied to Powder Rolling", Key Engineering Materials, Vol. 779, pp. 174-180, 2018

Online since:

September 2018

Export:

Price:

$38.00

* - Corresponding Author

[1] E. Golubchik and M. Polyakova, in: Proceedings of the 2015 International Conference on Structural, Mechanical and Material Engineering, edited by M.F. Eldessouki and M. Kaloop. Vol. 19 (2015), p.17.

[2] B.S. Mitchell: An Introduction to Materials Engineering and Science for Chemical and Materials Engineers (John Wiley & Sons, Inc., New Jersey 2004).

[3] E. Golubchik, M. Polyakova and A. Gulin: Applied Mechanics and Materials Vol. 656 (2014), p.497.

[4] T.H. Wu, X.Y. Li and L. Li: Applied Mechanics and Materials Vol. 851 (2016), p.37.

[5] J. Zhang,  Y.L. Zhu, G. Qi and J.Y. Li: Key Engineering Materials Vol. 727 (2017), p.670.

[6] Y.Q. Cui and S. Riffat: Applied Mechanics and Materials Vols. 71-78 (2011), p. (1958).

[7] A.L. Pisello, V.L. Castaldo, F. Rosso, C. Piselli, M. Ferrero and F. Cotana: Key Engineering Materials Vol. 678 (2016), p.14.

DOI: https://doi.org/10.4028/www.scientific.net/kem.678.14

[8] B.V. Ramnath, C. Parswajinan, C. Elanchezhian, S.V. Pragadeesh, P.R. Ramkishore, V. Sabarish: International Journal Applied Mechanics and Materials Vol. 591 (2014), p.120.

DOI: https://doi.org/10.4028/www.scientific.net/amm.591.120

[9] R.K. Dube: International Materials Reviews Vol. 35(1) (1990), p.253.

[10] C. Parswajinan, B.V. Ramnath, M. Vetrivel, P. Ramanarayanan, S. Bharath, T. Ajay and R.R. Chander: Applied Mechanics and Materials Vols. 813-814 (2015), p.9.

DOI: https://doi.org/10.4028/www.scientific.net/amm.813-814.9

[11] S. Guk, D. Milisova and K. Pranke: Key Engineering Materials Vol. 684 (2016), p.86.

[12] G. S. Upadhyaya: Materials Science Forum Vol. 835 (2016), p.1.

[13] S. Shima and M. Yamada: Powder Metallurgy Vol. 27(1) (1984), p.39.

[14] V.K. Sorokin, L.S. Shmelev and V.A. Vasil'ev: Development of process of rolling the metal powders (2003).

[15] K.A. Gogaev, G.Ya. Kalutskii and V.S. Voropaev: Powder Metall. Met. Ceram. Vol. 48(3) (2009), p.152.

[16] K.A. Gogaev, G.Ya. Kalutskii and V.S. Voropaev: Powder Metall. Met. Ceram. Vol. 48(5) (2009), p.474.

[17] K.A. Gogaev, G.Ya. Kalutskii and V.S. Voropaev: Powder Metall. Met. Ceram. Vol. 48(7) (2009), p.384.

[18] G.Sh. Huang, L.Y. Wang, Zh.W. Zhang, G.J. Huang and F.Sh. Pan: Materials Science Forum Vols. 488-489 (2005), p.445.

[19] V.P. Katashinskii and G.A. Vinogradov: Powder Metallurgy and Metal Ceramics Vol. 5(3) (1966), p.189.

[20] G.A. Vinogradov: Soviet Powder Metallurgy and Metal Ceramics Vol. 3(6) (1964), p.451.

[21] G.A. Vinogradov and V.P. Katashinskii: Powder Metallurgy and Metal Ceramics Vol. 4(9) (1965), p.722.

[22] V.P. Katashinskii: Powder Metallurgy and Metal Ceramics Vol. 20(11) (1981), p.754.

[23] O.A. Katrus and A.I. Otrok: Powder Metallurgy and Metal Ceramics Vol. 10(8) (1971), p.623.

[24] T. Hirohata, S. Masaki and S. Shima: Journal of Materials Processing Technology Vol. 111(1) (2001), p.113.

[25] Yu.F. Bahmatov, E.M. Golubchik, M.Ya. Mitlin and V.D. Golev, USSR Certificate of authorship 1,704,921. (1992).

[26] Yu.F. Bahmatov, E.M. Golubchik, M.Ya. Mitlin and V.D. Golev, USSR Certificate of authorship 1,743,694. (1992).

[27] Yu.F. Bahmatov and E.M. Golubchik, RU Patent 2,000,887 (1993).

[28] Yu.F. Bahmatov and E.M. Golubchik, RU Patent 2,192,320 (2002).