Potential in the Development of Borneo Acacia Wood Reinforced Polyhydroxyalkanoates Bio-Composites

Abstract:

Article Preview

This research focuses on the mechanical and morphological properties of acacia wood (AW) reinforced polyhydroxyalkanoates (PHA) bio-composites. Acacia woods waste in the form of sawdust was processed into short wood fiber, which was later mixed with pure PHA with different fiber loading (5wt%, 10wt%, 15wt% and 20wt%). The acacia wood fibers were chemically modified by using the naturalization technique (which used both acidic and alkaline base) using acetic acid and sodium bicarbonate. The hot press machine was used to fabricate the samples. Tensile and flexural samples were fabricated and tested according to the ASTM standards. The SEM images show that the chemically modified acacia wood reinforced PHA (M-AW-PHA) bio-composites create desirable adhesion which contributed to better mechanical strength at 15wt%, when compared with untreated acacia wood reinforced PHA (U-AW-PHA) bio-composites.

Info:

Periodical:

Edited by:

Marina Polyakova

Pages:

19-24

Citation:

M. K. bin Bakri et al., "Potential in the Development of Borneo Acacia Wood Reinforced Polyhydroxyalkanoates Bio-Composites", Key Engineering Materials, Vol. 779, pp. 19-24, 2018

Online since:

September 2018

Export:

Price:

$38.00

* - Corresponding Author

[1] L.L. Madison, G.W. Huisman: Microbiol. Mol. Biol. Rev. Vol. 63 (1999) p.21–53.

[2] A. Santhanam, S. Sasidharan: Afr. J. Biotechnol. Vol. 9 (2010), p.3144–3150.

[3] Lee. S.Y. Biotechnol. Bioeng. Vol. 49 (1996), p.1–14.

[4] S. Singh, A.K. Mohanty, T. Sugie, Y. Takai, H: Compos. Part A Vol. 39 (2008), p.875–886.

[5] L. Jiang, J. Huang, J. Qian, F. Chen, J. Zhang, M.P. Wolcott, Y. Zhu: J. Polym. Environ. Vol. 16 (2008), p.83–93.

[6] L. Jiang, F. Chen, J. Qian, J. Huang, M.P. Wolcott, L. Liu, J. Zhang: Ind. Eng. Chem. Res. Vol. 49 (2010), p.572–577.

[7] S. Wong, R. Shanks, A. Hodzic: Macromol. Mater. Eng. Vol. 287 (2002), p.647–655.

[8] N.M. Barkoula, S.K. Garkhail, T. Peijs: Ind. Crop. Prod. Vol. 31 (2010), 34–42.

[9] P. Persico, D. Acierno, C. Carfagna, F. Cimino: Int. J. Polym. Sci. Vol. 2011 (2011), 1–7.

[10] M.A. Khan, K.M.I. Ali, G. Hinrichsen, C. Kopp, S. Kropke: Polym.-Plast. Technol. Eng. Vol. 38 (1999), p.99–112.

[11] S. Luo, A.N. Netravalli: J. Mater. Sci. Vol. 34 (1999), p.3709–3719.

[12] A.K. Mohanty, M.A. Khan, S. Sahoo, G. Hinrichsen: J. Mater. Sci. Vol. 35 (2000), p.2589–2595.

[13] S. Singh, A.K. Mohanty: Wood fiber reinforced bacterial bioplastic composites: fabrication and performance evaluation. Compos. Sci. Technol. Vol. 67 (2007), p.1753–1763.

DOI: https://doi.org/10.1016/j.compscitech.2006.11.009

[14] M. Avella, G. La Rota, E. Martuscelli, M. Raimo: J. Mater. Sci. Vol. 35 (2000), p.829–836.

[15] V. Reinsch, S.S. Kelley: J. Appl. Polym. Sci. Vol. 64 (1997), p.1785–1796.

[16] S. Anderson, J. Zhang, M.P. Wolcott: J. Polym. Environ. Vol. 21 (2013), 631–639.

[17] A. Buzarovska, G. Bogoeva-Gaceva, A. Grozdanov, M. Avella, G. Gentile, M. Errico: Aust. J. Crop. Sci. Vol. 1 (2008), p.37–42.

DOI: https://doi.org/10.1002/pen.20749

[18] R. Bhardwaj, A.K. Mohanty, L.T. Drzal, F. Pourboghrat, M. Misra, Biomacromolec. Vol. 7 (2006), p.2044–(2051).

[19] PERKASA: Sarawak Timb. Ind. Develop. Corp. Newslett. Vol. 5/6. (2009), pp.6-8.

[20] N. Yamashita, S. Ohta, A. Hardjono: Forest Eco. and Manage. Vol. 254 (2008), pp.362-370.

[21] M. Inagaki, J. Titin, Evaluation of Site Environments for Agroforestry Production, Development of Agroforestry Technology for the Rehabilitation of Tropical Forests, Japan International Research Center for Agricultural, Sciences, Tsukuba, (2009).

[22] L. Yang, N. Liu, H. Ren, J. Wang: Forest Eco. and Manage. Vol. 257 (2009), pp.1786-1793.

[23] M.N. Hashim, Z. Maziah, A.A. Sheikh, in: Malayan Forestry and Forest Products Research, edited by S. Appanah, F.S.P. Ng, I. Roslan, Forestry Research Institute Malaysia, Kepong, (1990), pp.54-59.

[24] G. Weinland, A. Zuhaidi, in: Malayan Forestry and Forest Products Research, edited by S. Appanah, F.S.P. Ng, I. Roslan, Forestry Research Institute Malaysia, Kepong, (1990), pp.41-53.

[25] H. Korai, N.P.T. Lim: Proceed. of the 1st Int. Confer. on Acacia Species, Wood Prop. and Util., 1 (1998), p.91–96.

[26] O. Sulaiman, K. Yamamoto, R. Hashim: Proceed. of the 1st Int. Confer. on Acacia Species, Wood Prop. and Util., Vol. 1(1998), p.121–125.

[27] L.Y. Mwaikambo, M.P. Ansell, Macromol. Mater. and Eng. Vol. 272 (1999), pp.108-116.

[28] ASTM D6866-16, Standard Test Methods for Determining the Biobased Content of Solid, Liquid, and Gaseous Samples Using Radiocarbon Analysis, ASTM International, West Conshohocken, PA (2016).

DOI: https://doi.org/10.1520/d6866-11

[29] ASTM E41-92, Terminology Relating to Conditioning, ASTM International, West Conshohocken, PA (2010).

[30] ASTM D638-14, Standard Test Method for Tensile Properties of Plastics, ASTM International, West Conshohocken, PA (2014).

[31] ASTM D790-17, Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials, ASTM International, West Conshohocken, PA, (2017).

DOI: https://doi.org/10.1520/d0790-15

[32] ASTM E2015-04, Standard Guide for Preparation of Plastics and Polymeric Specimens for Microstructural Examination, ASTM International, West Conshohocken, PA (2014).

[33] L. Liu, J. Yu, L. Cheng, W. Qu: Compos.: Part A Vol. 40 (2009), pp.669-674.

[34] A. Balakrishna, D.N. Rao, A. S. Rakesh: Compos. Part B Vol. 55 (2013), pp.479-485.

[35] H.G. Rao: Appl. Plast. Eng. Handbook Vol. 1 (2017), pp.675-695.

Fetching data from Crossref.
This may take some time to load.