Potential in the Development of Borneo Acacia Wood Reinforced Polyhydroxyalkanoates Bio-Composites

Article Preview

Abstract:

This research focuses on the mechanical and morphological properties of acacia wood (AW) reinforced polyhydroxyalkanoates (PHA) bio-composites. Acacia woods waste in the form of sawdust was processed into short wood fiber, which was later mixed with pure PHA with different fiber loading (5wt%, 10wt%, 15wt% and 20wt%). The acacia wood fibers were chemically modified by using the naturalization technique (which used both acidic and alkaline base) using acetic acid and sodium bicarbonate. The hot press machine was used to fabricate the samples. Tensile and flexural samples were fabricated and tested according to the ASTM standards. The SEM images show that the chemically modified acacia wood reinforced PHA (M-AW-PHA) bio-composites create desirable adhesion which contributed to better mechanical strength at 15wt%, when compared with untreated acacia wood reinforced PHA (U-AW-PHA) bio-composites.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

19-24

Citation:

Online since:

September 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L.L. Madison, G.W. Huisman: Microbiol. Mol. Biol. Rev. Vol. 63 (1999) p.21–53.

Google Scholar

[2] A. Santhanam, S. Sasidharan: Afr. J. Biotechnol. Vol. 9 (2010), p.3144–3150.

Google Scholar

[3] Lee. S.Y. Biotechnol. Bioeng. Vol. 49 (1996), p.1–14.

Google Scholar

[4] S. Singh, A.K. Mohanty, T. Sugie, Y. Takai, H: Compos. Part A Vol. 39 (2008), p.875–886.

Google Scholar

[5] L. Jiang, J. Huang, J. Qian, F. Chen, J. Zhang, M.P. Wolcott, Y. Zhu: J. Polym. Environ. Vol. 16 (2008), p.83–93.

Google Scholar

[6] L. Jiang, F. Chen, J. Qian, J. Huang, M.P. Wolcott, L. Liu, J. Zhang: Ind. Eng. Chem. Res. Vol. 49 (2010), p.572–577.

Google Scholar

[7] S. Wong, R. Shanks, A. Hodzic: Macromol. Mater. Eng. Vol. 287 (2002), p.647–655.

Google Scholar

[8] N.M. Barkoula, S.K. Garkhail, T. Peijs: Ind. Crop. Prod. Vol. 31 (2010), 34–42.

Google Scholar

[9] P. Persico, D. Acierno, C. Carfagna, F. Cimino: Int. J. Polym. Sci. Vol. 2011 (2011), 1–7.

Google Scholar

[10] M.A. Khan, K.M.I. Ali, G. Hinrichsen, C. Kopp, S. Kropke: Polym.-Plast. Technol. Eng. Vol. 38 (1999), p.99–112.

Google Scholar

[11] S. Luo, A.N. Netravalli: J. Mater. Sci. Vol. 34 (1999), p.3709–3719.

Google Scholar

[12] A.K. Mohanty, M.A. Khan, S. Sahoo, G. Hinrichsen: J. Mater. Sci. Vol. 35 (2000), p.2589–2595.

Google Scholar

[13] S. Singh, A.K. Mohanty: Wood fiber reinforced bacterial bioplastic composites: fabrication and performance evaluation. Compos. Sci. Technol. Vol. 67 (2007), p.1753–1763.

DOI: 10.1016/j.compscitech.2006.11.009

Google Scholar

[14] M. Avella, G. La Rota, E. Martuscelli, M. Raimo: J. Mater. Sci. Vol. 35 (2000), p.829–836.

Google Scholar

[15] V. Reinsch, S.S. Kelley: J. Appl. Polym. Sci. Vol. 64 (1997), p.1785–1796.

Google Scholar

[16] S. Anderson, J. Zhang, M.P. Wolcott: J. Polym. Environ. Vol. 21 (2013), 631–639.

Google Scholar

[17] A. Buzarovska, G. Bogoeva-Gaceva, A. Grozdanov, M. Avella, G. Gentile, M. Errico: Aust. J. Crop. Sci. Vol. 1 (2008), p.37–42.

DOI: 10.1002/pc.20270

Google Scholar

[18] R. Bhardwaj, A.K. Mohanty, L.T. Drzal, F. Pourboghrat, M. Misra, Biomacromolec. Vol. 7 (2006), p.2044–(2051).

Google Scholar

[19] PERKASA: Sarawak Timb. Ind. Develop. Corp. Newslett. Vol. 5/6. (2009), pp.6-8.

Google Scholar

[20] N. Yamashita, S. Ohta, A. Hardjono: Forest Eco. and Manage. Vol. 254 (2008), pp.362-370.

Google Scholar

[21] M. Inagaki, J. Titin, Evaluation of Site Environments for Agroforestry Production, Development of Agroforestry Technology for the Rehabilitation of Tropical Forests, Japan International Research Center for Agricultural, Sciences, Tsukuba, (2009).

Google Scholar

[22] L. Yang, N. Liu, H. Ren, J. Wang: Forest Eco. and Manage. Vol. 257 (2009), pp.1786-1793.

Google Scholar

[23] M.N. Hashim, Z. Maziah, A.A. Sheikh, in: Malayan Forestry and Forest Products Research, edited by S. Appanah, F.S.P. Ng, I. Roslan, Forestry Research Institute Malaysia, Kepong, (1990), pp.54-59.

Google Scholar

[24] G. Weinland, A. Zuhaidi, in: Malayan Forestry and Forest Products Research, edited by S. Appanah, F.S.P. Ng, I. Roslan, Forestry Research Institute Malaysia, Kepong, (1990), pp.41-53.

Google Scholar

[25] H. Korai, N.P.T. Lim: Proceed. of the 1st Int. Confer. on Acacia Species, Wood Prop. and Util., 1 (1998), p.91–96.

Google Scholar

[26] O. Sulaiman, K. Yamamoto, R. Hashim: Proceed. of the 1st Int. Confer. on Acacia Species, Wood Prop. and Util., Vol. 1(1998), p.121–125.

Google Scholar

[27] L.Y. Mwaikambo, M.P. Ansell, Macromol. Mater. and Eng. Vol. 272 (1999), pp.108-116.

Google Scholar

[28] ASTM D6866-16, Standard Test Methods for Determining the Biobased Content of Solid, Liquid, and Gaseous Samples Using Radiocarbon Analysis, ASTM International, West Conshohocken, PA (2016).

DOI: 10.1520/d6866-10

Google Scholar

[29] ASTM E41-92, Terminology Relating to Conditioning, ASTM International, West Conshohocken, PA (2010).

Google Scholar

[30] ASTM D638-14, Standard Test Method for Tensile Properties of Plastics, ASTM International, West Conshohocken, PA (2014).

Google Scholar

[31] ASTM D790-17, Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials, ASTM International, West Conshohocken, PA, (2017).

DOI: 10.1520/d0790-15e01

Google Scholar

[32] ASTM E2015-04, Standard Guide for Preparation of Plastics and Polymeric Specimens for Microstructural Examination, ASTM International, West Conshohocken, PA (2014).

Google Scholar

[33] L. Liu, J. Yu, L. Cheng, W. Qu: Compos.: Part A Vol. 40 (2009), pp.669-674.

Google Scholar

[34] A. Balakrishna, D.N. Rao, A. S. Rakesh: Compos. Part B Vol. 55 (2013), pp.479-485.

Google Scholar

[35] H.G. Rao: Appl. Plast. Eng. Handbook Vol. 1 (2017), pp.675-695.

Google Scholar