Particulate Titania Coating on Poly(Dimethylsiloxane) Films for Improving Osteoconductive Ability

Article Preview

Abstract:

The cytocompatibility of the poly (dimethylsiloxane) (PDMS) surfaces can be improved by the coating with biomaterials. In this study, the methodology for the particulate titania (PT) coating on the PDMS film was investigated via the combined process of microfluidic synthesis system with spin-coating, leading to the one-step synthesis and coating. The PT was successfully deposited on the O2-plasma-treated PDMS films by mixing titanium tetraisopropoxide, isopropyl alcohol, water and octadecylamine in a microfluidic reactor and subsequently dropping. The rotation speed in the spin-coating plays an important role in the PT morphologies and deposition amounts on the PDMS films. Through the detailed investigation, the efficient condition for adhering PT to PDMS as well as inducing apatite formation from simulated body fluid was successfully discovered.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

151-157

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Pinto, P. Alves, C.M. Matos, A.C. Santos, L.R. Rodrigues, J.A. Teixeira, M.H. Gil, Poly (dimethyl siloxane) surface modification by low pressure plasma to improve its characteristics towards biomedical applications, Colloids Surf. B Biointerfaces 81 (2010).

DOI: 10.1016/j.colsurfb.2010.06.014

Google Scholar

[2] S. Sugiura, J.I. Edahiro, K. Sumaru, T. Kanamori, Surface modification of polydimethylsiloxane with photo-grafted poly (ethylene glycol) for micropatterned protein adsorption and cell adhesion, Colloids Surf. B Biointerfaces 63 (2008) 301–305.

DOI: 10.1016/j.colsurfb.2007.12.013

Google Scholar

[3] A.Mata, A. J. Fleischman, S. Roy, Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems, Biomed. Microdevices 7 (2005) 281–293.

DOI: 10.1007/s10544-005-6070-2

Google Scholar

[4] F. Sarvi, Z. Yue, K. Hourigan, M.C. Thompson, P.P. Chan, Surface-functionalization of PDMS for potential micro-bioreactor and embryonic stem cell culture applications, J. Mater. Chem. B 1 (2013) 987–996.

DOI: 10.1039/c2tb00019a

Google Scholar

[5] H. Park, I. Berzin, J. De Luis, G. Vunjak-Novakovic, Evaluation of silicone tubing toxicity using tobacco BY2 culture, In Vitro Cell Dev Biol Plant. 41 (2005) 555–560.

DOI: 10.1079/ivp2005670

Google Scholar

[6] R.M. Lycans, C.B. Higgins, M.S. Tanner, E.R. Blough, B.S. Day, Plasma treatment of PDMS for applications of in vitro motility assays, Colloids Surf. B Biointerfaces 116 (2014) 687–694.

DOI: 10.1016/j.colsurfb.2013.11.007

Google Scholar

[7] P. Hron, Hydrophilisation of silicone rubber for medical applications, Polym. Int. 52 (2003) 1531–1539.

DOI: 10.1002/pi.1273

Google Scholar

[8] D.G. Castner, B.D. Ratner, Biomedical surface science: Foundations to frontiers, Surf. Sci. 500 (2002) 28–60.

DOI: 10.1016/s0039-6028(01)01587-4

Google Scholar

[9] L.A. Bloomfield, Primer system for bonding conventional adhesives and coatings to silicone rubber, Int. J. Adhes. Adhes. 68 (2016) 239–247.

DOI: 10.1016/j.ijadhadh.2016.04.001

Google Scholar

[10] M. Khorasani, S. MoemenBellah, H. Mirzadeh, B. Sadatnia, Effect of surface charge and hydrophobicity of polyurethanes and silicone rubbers on L929 cells response, Colloids Surf. B: Biointerfaces 51 (2006) 112–119.

DOI: 10.1016/j.colsurfb.2006.06.002

Google Scholar

[11] H.M. Tan, H. Fukuda, T. Akagi, T. Ichiki, Surface modification of poly(dimethylsiloxane) for controlling biological cells' adhesion using a scanning radical microjet, Thin Solid Films 515 (2007) 5172–5178.

DOI: 10.1016/j.tsf.2006.10.026

Google Scholar

[12] C. Boudot, M. Kühn, M. Kühn-Kauffeldt, J. Schein, Vacuum arc plasma deposition of thin titanium dioxide films on silicone elastomer as a functional coating for medical applications, Mater. Sci. Eng. C 74 (2017) 508–514.

DOI: 10.1016/j.msec.2016.12.045

Google Scholar

[13] T. Okada, Y. Ikada, Surface modification of silicone for percutaneous implantation, J. Biomater. Sci. Polym. Ed. 7 (1996) 171–180.

Google Scholar

[14] S. Sugiura, J.I. Edahiro, K. Sumaru, T. Kanamori, Surface modification of polydimethylsiloxane with photo-grafted poly (ethylene glycol) for micropatterned protein adsorption and cell adhesion, Colloids Surf. B: Biointerfaces 63 (2008) 301–305.

DOI: 10.1016/j.colsurfb.2007.12.013

Google Scholar

[15] P. Liu, Q. Chen, B. Yuan, M. Chen, S. Wu, S. Lin, J. Shen, Facile surface modification of silicone rubber with zwitterionic polymers for improving blood compatibility, Mater. Sci. Eng. C 33 (2013) 3865–3874.

DOI: 10.1016/j.msec.2013.05.025

Google Scholar

[16] Y. Maruko, T.G.P. Galindo, M. Tagaya, Modification of Poly(dimethylsiloxane) by Mesostructured Siliceous Films for Constructing Protein-Interactive Surfaces, E-J. Surf. Sci. Nanotechnol. 16 (2018) 41–48.

DOI: 10.1380/ejssnt.2018.41

Google Scholar

[17] L.C. Gerhardt, G.M.R. Jell, A.R. Boccaccini, Titanium dioxide (TiO2) nanoparticles filled poly (D, L lactid acid)(PDLLA) matrix composites for bone tissue engineering, J. Mater. Sci. Mater. Med. 18 (2007) 1287–1298.

DOI: 10.1007/s10856-006-0062-5

Google Scholar

[18] R. Adell, B. Eriksson, U. Lekholm, P.I. Brånemark, T. Jemt, Long-term follow-up study of osseointegrated implants in the treatment of totally edentulous jaws, Int J Oral Maxillofac Implants 5 1990(1990) 347–359.

DOI: 10.1016/s0300-9785(81)80077-4

Google Scholar

[19] T.Albrektsson, P.I. Branemark, H.A. Hansson, J. Lindstrom, Osseointegrated titanium implants: Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man, Acta Orthop. Scand. 52 (1981)155–170.

DOI: 10.3109/17453678108991776

Google Scholar

[20] O. Girshevitz, Y. Nitzan, C.N. Sukenik, Solution-deposited amorphous titanium dioxide on silicone rubber: a conformal, crack-free antibacterial coating, Chem. Mater. 20 (2008) 1390‒1396.

DOI: 10.1021/cm702209r

Google Scholar

[21] H. Yamamoto, Y. Shibata, T. Miyazaki, Anode glow discharge plasma treatment of titanium plates facilitates adsorption of extracellular matrix proteins to the plates, J. Dent. Res. 84 (2005) 668–671.

DOI: 10.1177/154405910508400717

Google Scholar

[22] Y. Shibata, Y. Tanimoto, A review of improved fixation methods for dental implants. Part I: Surface optimization for rapid osseointegration, J. Prosthodont. Res. 59 (2015) 20–33.

DOI: 10.1016/j.jpor.2014.11.007

Google Scholar

[23] Jeom Sik Song, Sukmin Lee, Gook Chan Cha, Journal of applied polymer science 2005; 96: 1095‒1101. J.S. Song, S. Lee, G.C. Cha, S. H. Jung, S.Y. Choi, K.H. Kim, M.S. Mun, Surface modification of silicone rubber by ion beam assisted deposition (IBAD) for improved biocompatibility, J. Appl. Polym. Sci. 96 (2005).

DOI: 10.1002/app.21530

Google Scholar

[24] H. Liu, T.J. Webster, Nanomedicine for implants: a review of studies and necessary experimental tools, Biomaterials 28 (2007) 354–369.

DOI: 10.1016/j.biomaterials.2006.08.049

Google Scholar

[25] K. Shiba, T. Kataoka, M. Okuda, S. Blanco-Canosa, M. Tagaya, Designed synthesis of well-defined titania/iron (III) acetylacetonate nanohybrids with magnetic/luminescent properties, RSC Adv. 6 (2016) 55750–55754.

DOI: 10.1039/c6ra03824g

Google Scholar

[26] T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity?, Biomaterials. 27 (2006) 2907–2915.

DOI: 10.1016/j.biomaterials.2006.01.017

Google Scholar

[27] Y. Chai, T. Yamaguchi, M. Tagaya, Fabrication of phospholipid vesicle-interacted calcium phosphate films with sterilization stability, Cryst. Growth. Des. 17 (2017) 4977–4983.

DOI: 10.1021/acs.cgd.7b00918

Google Scholar

[28] D. Buso, J. Pacifico, A. Martucci, P. Mulvaney, Gold‐Nanoparticle‐Doped TiO2 Semiconductor Thin Films: Optical Characterization. Adv. Funct. Mater. 17 (2007) 347–354.

DOI: 10.1002/adfm.200600349

Google Scholar

[29] S. Bhattacharya, A. Datta, J.M. Berg, S. Gangopadhyay, Studies on surface wettability of poly (dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength, J. Microelectromech. S. 14 (2005) 590–597.

DOI: 10.1109/jmems.2005.844746

Google Scholar

[30] D. Bodas, C. Khan-Malek, Formation of more stable hydrophilic surfaces of PDMS by plasma and chemical treatments, Microelectron Eng. 83(2006) 1277–1279.

DOI: 10.1016/j.mee.2006.01.195

Google Scholar

[31] H. Zhang, J.F. Banfield, Kinetics of crystallization and crystal growth of nanocrystalline anatase in nanometer-sized amorphous titania, Chem. Mater. 14 (2002) 4145–4154.

DOI: 10.1021/cm020072k

Google Scholar

[32] F. Balas, M. Kawashita, T. Nakamura, T. Kokubo, Formation of bone-like apatite on organic polymers treated with a silane-coupling agent and a titania solution, Biomaterials. 27(2006) 1704–1710.

DOI: 10.1016/j.biomaterials.2005.10.004

Google Scholar

[33] H. Jensen, A. Soloviev, Z. Li, E.G. Søgaard, XPS and FTIR investigation of the surface properties of different prepared titania nano-powders, Appl. Surf. Sci. 246 (2005) 239–249.

DOI: 10.1016/j.apsusc.2004.11.015

Google Scholar

[34] M. Minella, M.G. Faga, V. Maurino, C. Minero, E. Pelizzetti, S. Coluccia, G. Martra, Effect of fluorination on the surface properties of titania P25 powder: an FTIR study, Langmuir. 26 (2010) 2521–2527.

DOI: 10.1021/la902807g

Google Scholar

[35] X.X. Wang, S. Hayakawa, K. Tsuru, A. Osaka, Bioactive titania gel layers formed by chemical treatment of Ti substrate with a H2O2/HCl solution, Biomaterials. 23 (2002) 1353–1357.

DOI: 10.1016/s0142-9612(01)00254-x

Google Scholar

[36] H. Chen, C. Wang, X. Yang, Z. Xiao, X. Zhu, K. Zhang, X. Zhang, Construction of surface HA/TiO2 coating on porous titanium scaffolds and its preliminary biological evaluation, Mater. Sci. Eng. C. 70, (2017) 1047–1056.

DOI: 10.1016/j.msec.2016.04.013

Google Scholar

[37] D.K. Pattanayak, S. Yamaguchi, T. Matsushita, T. Nakamura, T. Kokubo, Apatite-forming ability of titanium in terms of pH of the exposed solution. J. R. Soc. Interface. (2012) 1–11.

DOI: 10.1098/rsif.2012.0107

Google Scholar

[38] J. Locs, I. Narkevica, L. Bugovecka, J. Ozolins, L. Berzina-Cimdina, Apatite-forming ability of thermally treated titania with various phase compositions. Mater. Lett. 146 (2015) 69–72.

DOI: 10.1016/j.matlet.2015.01.129

Google Scholar

[39] M. Uchida, H.M. Kim, T. Kokubo, S. Fujibayashi, T. Nakamura, Structural dependence of apatite formation on titania gels in a simulated body fluid, J. Biomed. Mate.r Res. A. 64 (2003) 164–170.

DOI: 10.1002/jbm.a.10414

Google Scholar

[40] Y.W. Gu, B.Y. Tay, C.S. Lim, M.S. Yong, Biomimetic deposition of apatite coating on surface-modified NiTi alloy, Biomaterials, 26 (2005) 6916–6923.

DOI: 10.1016/j.biomaterials.2005.04.051

Google Scholar

[41] X.X. Wang, S. Hayakawa, K. Tsuru, A. Osaka, A comparative study of in vitro apatite deposition on heat‐, H2O2‐, and NaOH‐treated titanium surfaces, J. Biomed. Mate.r Res. A. 54 (2001) 172–178.

DOI: 10.1002/1097-4636(200102)54:2<172::aid-jbm3>3.0.co;2-#

Google Scholar

[42] J.M. Wu, M. Wang, Y.W. Li, F.D. Zhao, X.J. Ding, A. Osaka, Crystallization of amorphous titania gel by hot water aging and induction of in vitro apatite formation by crystallized titania, Surf. Coat. Technol. 201 (2006) 755–761.

DOI: 10.1016/j.surfcoat.2005.12.025

Google Scholar

[43] M. Uchida, H.M. Kim, T. Kokubo, T. Nakamura, Apatite-forming ability of sodium-containing titania gels in a simulated body fluid, J. Am. Ceram. Soc. 84 (2001) 2969–2974.

DOI: 10.1111/j.1151-2916.2001.tb01122.x

Google Scholar