[1]
S. Pinto, P. Alves, C.M. Matos, A.C. Santos, L.R. Rodrigues, J.A. Teixeira, M.H. Gil, Poly (dimethyl siloxane) surface modification by low pressure plasma to improve its characteristics towards biomedical applications, Colloids Surf. B Biointerfaces 81 (2010).
DOI: 10.1016/j.colsurfb.2010.06.014
Google Scholar
[2]
S. Sugiura, J.I. Edahiro, K. Sumaru, T. Kanamori, Surface modification of polydimethylsiloxane with photo-grafted poly (ethylene glycol) for micropatterned protein adsorption and cell adhesion, Colloids Surf. B Biointerfaces 63 (2008) 301–305.
DOI: 10.1016/j.colsurfb.2007.12.013
Google Scholar
[3]
A.Mata, A. J. Fleischman, S. Roy, Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems, Biomed. Microdevices 7 (2005) 281–293.
DOI: 10.1007/s10544-005-6070-2
Google Scholar
[4]
F. Sarvi, Z. Yue, K. Hourigan, M.C. Thompson, P.P. Chan, Surface-functionalization of PDMS for potential micro-bioreactor and embryonic stem cell culture applications, J. Mater. Chem. B 1 (2013) 987–996.
DOI: 10.1039/c2tb00019a
Google Scholar
[5]
H. Park, I. Berzin, J. De Luis, G. Vunjak-Novakovic, Evaluation of silicone tubing toxicity using tobacco BY2 culture, In Vitro Cell Dev Biol Plant. 41 (2005) 555–560.
DOI: 10.1079/ivp2005670
Google Scholar
[6]
R.M. Lycans, C.B. Higgins, M.S. Tanner, E.R. Blough, B.S. Day, Plasma treatment of PDMS for applications of in vitro motility assays, Colloids Surf. B Biointerfaces 116 (2014) 687–694.
DOI: 10.1016/j.colsurfb.2013.11.007
Google Scholar
[7]
P. Hron, Hydrophilisation of silicone rubber for medical applications, Polym. Int. 52 (2003) 1531–1539.
DOI: 10.1002/pi.1273
Google Scholar
[8]
D.G. Castner, B.D. Ratner, Biomedical surface science: Foundations to frontiers, Surf. Sci. 500 (2002) 28–60.
DOI: 10.1016/s0039-6028(01)01587-4
Google Scholar
[9]
L.A. Bloomfield, Primer system for bonding conventional adhesives and coatings to silicone rubber, Int. J. Adhes. Adhes. 68 (2016) 239–247.
DOI: 10.1016/j.ijadhadh.2016.04.001
Google Scholar
[10]
M. Khorasani, S. MoemenBellah, H. Mirzadeh, B. Sadatnia, Effect of surface charge and hydrophobicity of polyurethanes and silicone rubbers on L929 cells response, Colloids Surf. B: Biointerfaces 51 (2006) 112–119.
DOI: 10.1016/j.colsurfb.2006.06.002
Google Scholar
[11]
H.M. Tan, H. Fukuda, T. Akagi, T. Ichiki, Surface modification of poly(dimethylsiloxane) for controlling biological cells' adhesion using a scanning radical microjet, Thin Solid Films 515 (2007) 5172–5178.
DOI: 10.1016/j.tsf.2006.10.026
Google Scholar
[12]
C. Boudot, M. Kühn, M. Kühn-Kauffeldt, J. Schein, Vacuum arc plasma deposition of thin titanium dioxide films on silicone elastomer as a functional coating for medical applications, Mater. Sci. Eng. C 74 (2017) 508–514.
DOI: 10.1016/j.msec.2016.12.045
Google Scholar
[13]
T. Okada, Y. Ikada, Surface modification of silicone for percutaneous implantation, J. Biomater. Sci. Polym. Ed. 7 (1996) 171–180.
Google Scholar
[14]
S. Sugiura, J.I. Edahiro, K. Sumaru, T. Kanamori, Surface modification of polydimethylsiloxane with photo-grafted poly (ethylene glycol) for micropatterned protein adsorption and cell adhesion, Colloids Surf. B: Biointerfaces 63 (2008) 301–305.
DOI: 10.1016/j.colsurfb.2007.12.013
Google Scholar
[15]
P. Liu, Q. Chen, B. Yuan, M. Chen, S. Wu, S. Lin, J. Shen, Facile surface modification of silicone rubber with zwitterionic polymers for improving blood compatibility, Mater. Sci. Eng. C 33 (2013) 3865–3874.
DOI: 10.1016/j.msec.2013.05.025
Google Scholar
[16]
Y. Maruko, T.G.P. Galindo, M. Tagaya, Modification of Poly(dimethylsiloxane) by Mesostructured Siliceous Films for Constructing Protein-Interactive Surfaces, E-J. Surf. Sci. Nanotechnol. 16 (2018) 41–48.
DOI: 10.1380/ejssnt.2018.41
Google Scholar
[17]
L.C. Gerhardt, G.M.R. Jell, A.R. Boccaccini, Titanium dioxide (TiO2) nanoparticles filled poly (D, L lactid acid)(PDLLA) matrix composites for bone tissue engineering, J. Mater. Sci. Mater. Med. 18 (2007) 1287–1298.
DOI: 10.1007/s10856-006-0062-5
Google Scholar
[18]
R. Adell, B. Eriksson, U. Lekholm, P.I. Brånemark, T. Jemt, Long-term follow-up study of osseointegrated implants in the treatment of totally edentulous jaws, Int J Oral Maxillofac Implants 5 1990(1990) 347–359.
DOI: 10.1016/s0300-9785(81)80077-4
Google Scholar
[19]
T.Albrektsson, P.I. Branemark, H.A. Hansson, J. Lindstrom, Osseointegrated titanium implants: Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man, Acta Orthop. Scand. 52 (1981)155–170.
DOI: 10.3109/17453678108991776
Google Scholar
[20]
O. Girshevitz, Y. Nitzan, C.N. Sukenik, Solution-deposited amorphous titanium dioxide on silicone rubber: a conformal, crack-free antibacterial coating, Chem. Mater. 20 (2008) 1390‒1396.
DOI: 10.1021/cm702209r
Google Scholar
[21]
H. Yamamoto, Y. Shibata, T. Miyazaki, Anode glow discharge plasma treatment of titanium plates facilitates adsorption of extracellular matrix proteins to the plates, J. Dent. Res. 84 (2005) 668–671.
DOI: 10.1177/154405910508400717
Google Scholar
[22]
Y. Shibata, Y. Tanimoto, A review of improved fixation methods for dental implants. Part I: Surface optimization for rapid osseointegration, J. Prosthodont. Res. 59 (2015) 20–33.
DOI: 10.1016/j.jpor.2014.11.007
Google Scholar
[23]
Jeom Sik Song, Sukmin Lee, Gook Chan Cha, Journal of applied polymer science 2005; 96: 1095‒1101. J.S. Song, S. Lee, G.C. Cha, S. H. Jung, S.Y. Choi, K.H. Kim, M.S. Mun, Surface modification of silicone rubber by ion beam assisted deposition (IBAD) for improved biocompatibility, J. Appl. Polym. Sci. 96 (2005).
DOI: 10.1002/app.21530
Google Scholar
[24]
H. Liu, T.J. Webster, Nanomedicine for implants: a review of studies and necessary experimental tools, Biomaterials 28 (2007) 354–369.
DOI: 10.1016/j.biomaterials.2006.08.049
Google Scholar
[25]
K. Shiba, T. Kataoka, M. Okuda, S. Blanco-Canosa, M. Tagaya, Designed synthesis of well-defined titania/iron (III) acetylacetonate nanohybrids with magnetic/luminescent properties, RSC Adv. 6 (2016) 55750–55754.
DOI: 10.1039/c6ra03824g
Google Scholar
[26]
T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity?, Biomaterials. 27 (2006) 2907–2915.
DOI: 10.1016/j.biomaterials.2006.01.017
Google Scholar
[27]
Y. Chai, T. Yamaguchi, M. Tagaya, Fabrication of phospholipid vesicle-interacted calcium phosphate films with sterilization stability, Cryst. Growth. Des. 17 (2017) 4977–4983.
DOI: 10.1021/acs.cgd.7b00918
Google Scholar
[28]
D. Buso, J. Pacifico, A. Martucci, P. Mulvaney, Gold‐Nanoparticle‐Doped TiO2 Semiconductor Thin Films: Optical Characterization. Adv. Funct. Mater. 17 (2007) 347–354.
DOI: 10.1002/adfm.200600349
Google Scholar
[29]
S. Bhattacharya, A. Datta, J.M. Berg, S. Gangopadhyay, Studies on surface wettability of poly (dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength, J. Microelectromech. S. 14 (2005) 590–597.
DOI: 10.1109/jmems.2005.844746
Google Scholar
[30]
D. Bodas, C. Khan-Malek, Formation of more stable hydrophilic surfaces of PDMS by plasma and chemical treatments, Microelectron Eng. 83(2006) 1277–1279.
DOI: 10.1016/j.mee.2006.01.195
Google Scholar
[31]
H. Zhang, J.F. Banfield, Kinetics of crystallization and crystal growth of nanocrystalline anatase in nanometer-sized amorphous titania, Chem. Mater. 14 (2002) 4145–4154.
DOI: 10.1021/cm020072k
Google Scholar
[32]
F. Balas, M. Kawashita, T. Nakamura, T. Kokubo, Formation of bone-like apatite on organic polymers treated with a silane-coupling agent and a titania solution, Biomaterials. 27(2006) 1704–1710.
DOI: 10.1016/j.biomaterials.2005.10.004
Google Scholar
[33]
H. Jensen, A. Soloviev, Z. Li, E.G. Søgaard, XPS and FTIR investigation of the surface properties of different prepared titania nano-powders, Appl. Surf. Sci. 246 (2005) 239–249.
DOI: 10.1016/j.apsusc.2004.11.015
Google Scholar
[34]
M. Minella, M.G. Faga, V. Maurino, C. Minero, E. Pelizzetti, S. Coluccia, G. Martra, Effect of fluorination on the surface properties of titania P25 powder: an FTIR study, Langmuir. 26 (2010) 2521–2527.
DOI: 10.1021/la902807g
Google Scholar
[35]
X.X. Wang, S. Hayakawa, K. Tsuru, A. Osaka, Bioactive titania gel layers formed by chemical treatment of Ti substrate with a H2O2/HCl solution, Biomaterials. 23 (2002) 1353–1357.
DOI: 10.1016/s0142-9612(01)00254-x
Google Scholar
[36]
H. Chen, C. Wang, X. Yang, Z. Xiao, X. Zhu, K. Zhang, X. Zhang, Construction of surface HA/TiO2 coating on porous titanium scaffolds and its preliminary biological evaluation, Mater. Sci. Eng. C. 70, (2017) 1047–1056.
DOI: 10.1016/j.msec.2016.04.013
Google Scholar
[37]
D.K. Pattanayak, S. Yamaguchi, T. Matsushita, T. Nakamura, T. Kokubo, Apatite-forming ability of titanium in terms of pH of the exposed solution. J. R. Soc. Interface. (2012) 1–11.
DOI: 10.1098/rsif.2012.0107
Google Scholar
[38]
J. Locs, I. Narkevica, L. Bugovecka, J. Ozolins, L. Berzina-Cimdina, Apatite-forming ability of thermally treated titania with various phase compositions. Mater. Lett. 146 (2015) 69–72.
DOI: 10.1016/j.matlet.2015.01.129
Google Scholar
[39]
M. Uchida, H.M. Kim, T. Kokubo, S. Fujibayashi, T. Nakamura, Structural dependence of apatite formation on titania gels in a simulated body fluid, J. Biomed. Mate.r Res. A. 64 (2003) 164–170.
DOI: 10.1002/jbm.a.10414
Google Scholar
[40]
Y.W. Gu, B.Y. Tay, C.S. Lim, M.S. Yong, Biomimetic deposition of apatite coating on surface-modified NiTi alloy, Biomaterials, 26 (2005) 6916–6923.
DOI: 10.1016/j.biomaterials.2005.04.051
Google Scholar
[41]
X.X. Wang, S. Hayakawa, K. Tsuru, A. Osaka, A comparative study of in vitro apatite deposition on heat‐, H2O2‐, and NaOH‐treated titanium surfaces, J. Biomed. Mate.r Res. A. 54 (2001) 172–178.
DOI: 10.1002/1097-4636(200102)54:2<172::aid-jbm3>3.0.co;2-#
Google Scholar
[42]
J.M. Wu, M. Wang, Y.W. Li, F.D. Zhao, X.J. Ding, A. Osaka, Crystallization of amorphous titania gel by hot water aging and induction of in vitro apatite formation by crystallized titania, Surf. Coat. Technol. 201 (2006) 755–761.
DOI: 10.1016/j.surfcoat.2005.12.025
Google Scholar
[43]
M. Uchida, H.M. Kim, T. Kokubo, T. Nakamura, Apatite-forming ability of sodium-containing titania gels in a simulated body fluid, J. Am. Ceram. Soc. 84 (2001) 2969–2974.
DOI: 10.1111/j.1151-2916.2001.tb01122.x
Google Scholar