Some Tribological Aspects of Mg-0.5Ca-xY Biodegradable Materials

Article Preview

Abstract:

Biodegradable materials are a further development of new medical applications, such as orthopedic implants and vascular stents, or the tissue scaffold. The variety of alloying elements introduced into magnesium alloys lead to superior corrosion resistance and mechanical properties similar to the biological bone. From a mechanical point of view, increasing the percentage of calcium leads to decreased strength and elongation resistance, and Yttrium addition greatly improves tensile strength and favors a slower degradation process. Three different Mg-0.5Ca-xY alloys were obtained, varying the concentration of the Y-element. The Mg-0.5Ca-xY system was tested from the point of view of micro-scratch and micro-indentation with three determinations each, obtaining results for Young's mode, micro-hardness, COF and stiffness. These alloys possess mechanical properties for use as orthopaedic applications. As future studies, mechanical properties can be improved by performing heat treatments.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

136-141

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y.F. Zheng, X.N. Gu, F. Witte, Biodegradable metals, Materials Science and Engineering: R: Reports 77 (2014) 1-34.

Google Scholar

[2] I.V. Antoniac, M. Marian, M. Dinu, Metallurgical characterization of some magnesium alloys for medical applications, Solid State Phenomena 188 (2012) 109-113.

DOI: 10.4028/www.scientific.net/ssp.188.109

Google Scholar

[3] I. Antoniac, M.D. Vrânceanu, A. Antoniac, The influence of the magnesium powder used as reinforcement material on the properties of some collagen based composite biomaterials, Journal of Optoelectronics and Advanced Materials 15 (2013) 667-672.

Google Scholar

[4] B. Istrate, D. Mareci, C. Munteanu, S. Stanciu, D. Luca, C.I. Crimu, E. Kamel, In vitro electrochemical properties of biodegradable ZrO2-CaO coated MgCa alloy using atmospheric plasma spraying, Journal of Optoelectronics and Advanced Materials 17(7-8) (2015).

DOI: 10.30638/eemj.2016.104

Google Scholar

[5] I.B. Roman, M.H. Tierean, J.L. Ocaña, C. Munteanu, Microstructural characterization and friction coefficient after the laser shock processing treatment on AISI 316 L stainless steel welds, Journal of Optoelectronics and Advanced Materials 15(7-8) (2013).

Google Scholar

[6] M.S. Bǎlţatu, P. Vizureanu, M. Benchea, M.G. Minciunǎ, D.C. Achiţei, B. Istrate, Ti-Mo-Zr-Ta alloy for biomedical applications: Microstructures and mechanical properties, Key Engineering Materials 750 (2017) 184-188.

DOI: 10.4028/www.scientific.net/kem.750.184

Google Scholar

[7] A.C. Bǎrbînţǎ, R. Chelariu, M. Benchea, C.I. Crimu, S.I. Strugaru, C. Munteanu, A comparative analysis of new Ti-Nb-Zr-Ta orthopedic alloys, Advanced Materials Research 837 (2014) 259-264.

DOI: 10.4028/www.scientific.net/amr.837.259

Google Scholar

[8] B. Ghiban, A. Ghiban, C.M. Bortun, N. Ghiban, M. Rosso, Structural characterization of a new cobalt alloy for dental applications, Journal of Optoelectronics and Advanced Materials 15(7-8) (2013) 911-917.

DOI: 10.4028/www.scientific.net/kem.583.36

Google Scholar

[9] Y. Sun, W. Zhang, X. Min, Tensile strength and creep resistance of Mg-9Al-1Zn based alloys with calcium addition, J. Acta Metallurgica Sinica 14(5) (2001) 330-334.

Google Scholar

[10] S. Sandlo¨bes, S. Zaefferer, I. Schestakow, S. Yi, R. Gonzalez-Martinez, On the role of non-basal deformation mechanisms for the ductility of Mg and Mg–Y alloys, Acta Materialia 59 (2011) 429–439.

DOI: 10.1016/j.actamat.2010.08.031

Google Scholar

[11] S. Tekumalla, C. Yang, S. Seetharaman, W. L. E. Wong, C. S. Goh, R. Shabadi, M. Gupta, Enhancing overall static/dynamic/damping/ignition response of magnesium through the addition of lower amounts (<2%) of yttrium, Journal of Alloys and Compounds 689 (2016).

DOI: 10.1016/j.jallcom.2016.07.324

Google Scholar

[12] J. Yuan, Q. Wang, D. Yin, H. Wang, C. Chen, B. Ye, Creep behavior of Mg–9Gd–1Y–0.5Zr (wt.%) alloy piston by squeeze casting, Materials Characterization 78 (2013) 37–46.

DOI: 10.1016/j.matchar.2013.01.012

Google Scholar

[13] Y.L. Mu, Q.D. Wang, M.L. Hu, V. Janik, D.D. Yin, Elevated-temperature impact toughness of Mg–(Gd, Y)–Zr alloy, Scripta Materialia 68 (2013) 885–888.

DOI: 10.1016/j.scriptamat.2013.02.031

Google Scholar

[14] J.-M. Kim, J.-S. Park, K.-T. Kim, Tensile creep and corrosion properties of Mg-2%Ca based cast alloys, Trans. Nonferrous Met. Soc. China 21 (2011) 869-873.

DOI: 10.1016/s1003-6326(11)60795-4

Google Scholar

[15] M.B. Yang, D.-Y Wu, M.-D Hou, F.-S. Pan, As-cast microstructures and mechanical properties of Mg-4Zn-xY-1Ca (x=1.0, 1.5, 2.0, 3.0) magnesium alloys, Transactions of Nonferrous Metals Society of China 25(3) (2015) 721-731.

DOI: 10.1016/s1003-6326(15)63657-3

Google Scholar

[16] D.-T. Chou, D. Hong, P. Saha, J. Ferrero, B. Lee, Z. Tan, Z. Dong, P. N. Kumta, In vitro and in vivo corrosion, cytocompatibility and mechanical properties of biodegradable Mg–Y–Ca–Zr alloys as implant materials, Acta Biomaterialia 9 (2013).

DOI: 10.1016/j.actbio.2013.06.025

Google Scholar

[17] H. Ibrahim, A. D. Klarner, B. Poorganji, D. Dean, A. A. Luo, M. Elahinia, Microstructural, mechanical and corrosion characteristics of heat-treated Mg-1.2Zn-0.5Ca (wt%) alloy for use as resorbable bone fixation material, Journal of the mechanical behavior of biomedical materials 69 (2017).

DOI: 10.1016/j.jmbbm.2017.01.005

Google Scholar

[18] S. Lupescu, B. Istrate, C. Munteanu, M.G. Minciuna, S. Focsaneanu, K. Earar, Characterization of some master Mg-X System (Ca, Mn, Zr, Y) alloys used in medical applications, REV.CHIM. 68(6) (2017) 1408-1413.

DOI: 10.37358/rc.17.6.5664

Google Scholar

[19] https://erris.gov.ro/Centrul-de-Cercetare-in-Ingi-2.

Google Scholar

[20] C.I Crimu, B. Istrate, C. Munteanu, I. Antoniac, M.N. Matei, K. Earar, XRD and microstructural analyses on biodegradable Mg alloys, Key Engineering Materials 638 (2014) 79-84.

DOI: 10.4028/www.scientific.net/kem.638.79

Google Scholar