[1]
Y.F. Zheng, X.N. Gu, F. Witte, Biodegradable metals, Materials Science and Engineering: R: Reports 77 (2014) 1-34.
Google Scholar
[2]
I.V. Antoniac, M. Marian, M. Dinu, Metallurgical characterization of some magnesium alloys for medical applications, Solid State Phenomena 188 (2012) 109-113.
DOI: 10.4028/www.scientific.net/ssp.188.109
Google Scholar
[3]
I. Antoniac, M.D. Vrânceanu, A. Antoniac, The influence of the magnesium powder used as reinforcement material on the properties of some collagen based composite biomaterials, Journal of Optoelectronics and Advanced Materials 15 (2013) 667-672.
Google Scholar
[4]
B. Istrate, D. Mareci, C. Munteanu, S. Stanciu, D. Luca, C.I. Crimu, E. Kamel, In vitro electrochemical properties of biodegradable ZrO2-CaO coated MgCa alloy using atmospheric plasma spraying, Journal of Optoelectronics and Advanced Materials 17(7-8) (2015).
DOI: 10.30638/eemj.2016.104
Google Scholar
[5]
I.B. Roman, M.H. Tierean, J.L. Ocaña, C. Munteanu, Microstructural characterization and friction coefficient after the laser shock processing treatment on AISI 316 L stainless steel welds, Journal of Optoelectronics and Advanced Materials 15(7-8) (2013).
Google Scholar
[6]
M.S. Bǎlţatu, P. Vizureanu, M. Benchea, M.G. Minciunǎ, D.C. Achiţei, B. Istrate, Ti-Mo-Zr-Ta alloy for biomedical applications: Microstructures and mechanical properties, Key Engineering Materials 750 (2017) 184-188.
DOI: 10.4028/www.scientific.net/kem.750.184
Google Scholar
[7]
A.C. Bǎrbînţǎ, R. Chelariu, M. Benchea, C.I. Crimu, S.I. Strugaru, C. Munteanu, A comparative analysis of new Ti-Nb-Zr-Ta orthopedic alloys, Advanced Materials Research 837 (2014) 259-264.
DOI: 10.4028/www.scientific.net/amr.837.259
Google Scholar
[8]
B. Ghiban, A. Ghiban, C.M. Bortun, N. Ghiban, M. Rosso, Structural characterization of a new cobalt alloy for dental applications, Journal of Optoelectronics and Advanced Materials 15(7-8) (2013) 911-917.
DOI: 10.4028/www.scientific.net/kem.583.36
Google Scholar
[9]
Y. Sun, W. Zhang, X. Min, Tensile strength and creep resistance of Mg-9Al-1Zn based alloys with calcium addition, J. Acta Metallurgica Sinica 14(5) (2001) 330-334.
Google Scholar
[10]
S. Sandlo¨bes, S. Zaefferer, I. Schestakow, S. Yi, R. Gonzalez-Martinez, On the role of non-basal deformation mechanisms for the ductility of Mg and Mg–Y alloys, Acta Materialia 59 (2011) 429–439.
DOI: 10.1016/j.actamat.2010.08.031
Google Scholar
[11]
S. Tekumalla, C. Yang, S. Seetharaman, W. L. E. Wong, C. S. Goh, R. Shabadi, M. Gupta, Enhancing overall static/dynamic/damping/ignition response of magnesium through the addition of lower amounts (<2%) of yttrium, Journal of Alloys and Compounds 689 (2016).
DOI: 10.1016/j.jallcom.2016.07.324
Google Scholar
[12]
J. Yuan, Q. Wang, D. Yin, H. Wang, C. Chen, B. Ye, Creep behavior of Mg–9Gd–1Y–0.5Zr (wt.%) alloy piston by squeeze casting, Materials Characterization 78 (2013) 37–46.
DOI: 10.1016/j.matchar.2013.01.012
Google Scholar
[13]
Y.L. Mu, Q.D. Wang, M.L. Hu, V. Janik, D.D. Yin, Elevated-temperature impact toughness of Mg–(Gd, Y)–Zr alloy, Scripta Materialia 68 (2013) 885–888.
DOI: 10.1016/j.scriptamat.2013.02.031
Google Scholar
[14]
J.-M. Kim, J.-S. Park, K.-T. Kim, Tensile creep and corrosion properties of Mg-2%Ca based cast alloys, Trans. Nonferrous Met. Soc. China 21 (2011) 869-873.
DOI: 10.1016/s1003-6326(11)60795-4
Google Scholar
[15]
M.B. Yang, D.-Y Wu, M.-D Hou, F.-S. Pan, As-cast microstructures and mechanical properties of Mg-4Zn-xY-1Ca (x=1.0, 1.5, 2.0, 3.0) magnesium alloys, Transactions of Nonferrous Metals Society of China 25(3) (2015) 721-731.
DOI: 10.1016/s1003-6326(15)63657-3
Google Scholar
[16]
D.-T. Chou, D. Hong, P. Saha, J. Ferrero, B. Lee, Z. Tan, Z. Dong, P. N. Kumta, In vitro and in vivo corrosion, cytocompatibility and mechanical properties of biodegradable Mg–Y–Ca–Zr alloys as implant materials, Acta Biomaterialia 9 (2013).
DOI: 10.1016/j.actbio.2013.06.025
Google Scholar
[17]
H. Ibrahim, A. D. Klarner, B. Poorganji, D. Dean, A. A. Luo, M. Elahinia, Microstructural, mechanical and corrosion characteristics of heat-treated Mg-1.2Zn-0.5Ca (wt%) alloy for use as resorbable bone fixation material, Journal of the mechanical behavior of biomedical materials 69 (2017).
DOI: 10.1016/j.jmbbm.2017.01.005
Google Scholar
[18]
S. Lupescu, B. Istrate, C. Munteanu, M.G. Minciuna, S. Focsaneanu, K. Earar, Characterization of some master Mg-X System (Ca, Mn, Zr, Y) alloys used in medical applications, REV.CHIM. 68(6) (2017) 1408-1413.
DOI: 10.37358/rc.17.6.5664
Google Scholar
[19]
https://erris.gov.ro/Centrul-de-Cercetare-in-Ingi-2.
Google Scholar
[20]
C.I Crimu, B. Istrate, C. Munteanu, I. Antoniac, M.N. Matei, K. Earar, XRD and microstructural analyses on biodegradable Mg alloys, Key Engineering Materials 638 (2014) 79-84.
DOI: 10.4028/www.scientific.net/kem.638.79
Google Scholar