Effect of the Pore Structure of an Apatite-Fiber Scaffold on the Differentiation of P19.CL6 Cells into Cardiomyocytes

Article Preview

Abstract:

We previously reported that P19.CL6 cells can be cultured in porous hydroxyapatite ceramics prepared by firing green compacts consisting of apatite fibers and spherical carbon beads (150 μm in diameter). Cells cultured for 20 days in an apatite-fiber scaffold (AFS) proliferated and differentiated into cells expressing troponin T, a cardiomyocyte-specific gene, but the expression level was insufficient to support the functional maturation of cells required for biomedical device applications. In this study, we aimed to optimize the internal AFS environment for cardiomyocytes by mixing two sizes (150-and 20-μm) of carbon beads. P19.CL6 cells were cultured in AFS materials comprising different carbon ratios in the presence of alpha-MEM with (AFS+) or without (AFS-) dimethyl sulfoxide (DMSO), and cell growth and gene expression were assessed. We found that AFS(50, 1:1 ratio) is the most suitable scaffold for the proliferation and differentiation of P19.CL6 cells and the addition of DMSO to the culture medium is necessary for differentiation into cardiomyocytes. We also assessed the culture of P19.CL6 cells in AFS in a radial-flow bioreactor for several days.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

116-123

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.L. Harvey, Natural products in drug discovery, Drug Discov. Today 13 (2008) 894-901.

DOI: 10.1016/j.drudis.2008.07.004

Google Scholar

[2] B. Shen, A new golden age of natural products drug discovery, Cell 163 (2015) 1297-1300.

DOI: 10.1016/j.cell.2015.11.031

Google Scholar

[3] O. Kepp, L. Galluzzi, M. Lipinski, J. Yuan, G. Kroemer, Cell death assays for drug discovery, Nat. Rev. Drug Discov. 10 (2011) 221-237.

DOI: 10.1038/nrd3373

Google Scholar

[4] F.M. Balis, Evolution of anticancer drug discovery and the role of cell-based screening, J. Natl. Cancer Inst. 94 (2002) 78-79.

Google Scholar

[5] W.H. Zimmermann, C. Fink, D. Kralisch, U. Remmers, J. Weil, T. Eschenhagen, Three-dimensional engineered heart tissue from neonatal rat cardiac myocytes, Biotechnol. Bioeng. 68 (2000) 106-114.

DOI: 10.1002/(sici)1097-0290(20000405)68:1<106::aid-bit13>3.0.co;2-3

Google Scholar

[6] E. Cukierman, R. Pankov, K.M. Yamada, Cell interactions with three-dimensional matrices, Curr. Opin. Cell Biol. 14 (2002) 633-640.

DOI: 10.1016/s0955-0674(02)00364-2

Google Scholar

[7] M. Honda, T.J. Fujimi, S. Izumi, K. Izawa, M. Aizawa, H. Morisue, T. Tsuchiya, N. Kanzawa, Topographical analyses of proliferation and differentiation of osteoblasts in micro- and macropores of apatite-fiber scaffold, J. Biomed. Mater. Res. A 94 (2010).

DOI: 10.1002/jbm.a.32779

Google Scholar

[8] J.C. Mei, A.Y. Wu, P.C. Wu, N.C. Cheng, W.B. Tsai, J. Yu, Three-dimensional extracellular matrix scaffolds by microfluidic fabrication for long-term spontaneously contracted cardiomyocyte culture, Tissue Eng. Part A 20 (2014) 2931-2941.

DOI: 10.1089/ten.tea.2013.0549

Google Scholar

[9] J.U. Lind, T.A. Busbee, A.D. Valentine, F.S. Pasqualini, H. Yuan, M. Yadid, S.J. Park, A. Kotikian, A.P. Nesmith, P.H. Campbell, J.J. Vlassak, J.A. Lewis, K.K. Parker, Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing, Na.t Mater. 16 (2017).

DOI: 10.1038/nmat4782

Google Scholar

[10] N.M. Mordwinkin, P.W. Burridge, J.C. Wu, A review of human pluripotent stem cell-derived cardiomyocytes for high-throughput drug discovery, cardiotoxicity screening, and publication standards, J. Cardiovasc. Transl. Res. 6 (2013) 22-30.

DOI: 10.1007/s12265-012-9423-2

Google Scholar

[11] D. Sinnecker, K.L. Laugwitz, A. Moretti, Induced pluripotent stem cell-derived cardiomyocytes for drug development and toxicity testing, Pharmacol. Ther. 143 (2014) 246-252.

DOI: 10.1016/j.pharmthera.2014.03.004

Google Scholar

[12] M. Larsen, V.V. Artym, J.A. Green, K.M. Yamada, The matrix reorganized: extracellular matrix remodeling and integrin signaling, Curr. Opin. Cell Biol. 18 (2006) 463-471.

DOI: 10.1016/j.ceb.2006.08.009

Google Scholar

[13] M. Kawata, H. Uchida, K. Itatani, I. Okada, S. Koda, M. Aizawa, Development of porous ceramics with well-controlled porosities and pore sizes from apatite fibers and their evaluations, J. Mater. Sci. Mater. Med. 15 (2004) 817-823.

DOI: 10.1023/b:jmsm.0000032823.66093.aa

Google Scholar

[14] M. Aizawa, H. Shinoda, H. Uchida, I. Okada, T.J. Fujimi, N. Kanzawa, H. Morisue, M. Matsumoto, Y. Toyama, In vitro biological evaluations of three-dimensional scaffold developed from single-crystal apatite fibres for tissue engineering of bone, Phosph. Res. Bull. 17 (2004).

DOI: 10.3363/prb1992.17.0_262

Google Scholar

[15] A. Habara-Ohkubo, Differentiation of beating cardiac muscle cells from a derivative of P19 embryonal carcinoma cells, Cell Struct. Funct. 21 (1996) 101-110.

DOI: 10.1247/csf.21.101

Google Scholar

[16] M.A. Rudnicki, G. Jackowski, L. Saggin, M.W. McBurney, Actin and myosin expression during development of cardiac muscle from cultured embryonal carcinoma cells, Dev. Biol. 138 (1990) 348-358.

DOI: 10.1016/0012-1606(90)90202-t

Google Scholar

[17] N. Kanzawa, H. Takano, K. Yasuda, M. Takahara, M. Aizawa, Studies on connexin 43, a gap-junction protein, in P19 embryonal carcinoma cells after culture on an apatite fiber scaffold, Key Eng. Mater. 696 (2016) 230-233.

DOI: 10.4028/www.scientific.net/kem.696.230

Google Scholar

[18] K. Yasuda, H. Ishii, M. Takahara, M. Aizawa, N. Kanzawa, P19.CL6 cells cultured in apatite-fiber scaffold differentiate into cardiomyocytes, Key Eng. Mater. 631 (2014) 295-299.

DOI: 10.4028/www.scientific.net/kem.631.295

Google Scholar

[19] H. Morisue, M. Matsumoto, K. Chiba, H. Matsumoto, Y. Toyama, M. Aizawa, N. Kanzawa, T.J. Fujimi, H. Uchida, I. Okada, Novel apatite fiber scaffolds can promote three-dimensional proliferation of osteoblasts in rodent bone regeneration models, J. Biomed. Mater. Res. A 90 (2009).

DOI: 10.1002/jbm.a.32147

Google Scholar

[20] C.A. Schneider, W.S. Rasband, K.W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis, Nat. Methods. 9 (2012) 671-675.

DOI: 10.1038/nmeth.2089

Google Scholar

[21] C. Grépin, L. Robitaille, T. Antakly, M. Nemer, Inhibition of transcription factor GATA-4 expression blocks in vitro cardiac muscle differentiation, Mol. Cell. Biol. 15 (1995) 4095-4102.

DOI: 10.1128/mcb.15.8.4095

Google Scholar

[22] G. Wang, H.I. Yeh, J.J. Lin, Characterization of cis-regulating elements and trans-activating factors of the rat cardiac troponin T gene, J. Biol. Chem. 269 (1994) 30595-30603.

DOI: 10.1016/s0021-9258(18)43855-0

Google Scholar

[23] X. Shen, Q. Yang, P. Jin, X. Li, Alpha-lipoic acid enhances DMSO-induced cardiomyogenic differentiation of P19 cells, Acta Biochim. Biophys. Sin. (Shanghai) 46 (2014) 766-773.

DOI: 10.1093/abbs/gmu057

Google Scholar

[24] R. Saito, Y. Ishii, R. Ito, K. Nagatsuma, K. Tanaka, M. Saito, H. Maehashi, H. Nomoto, K. Ohkawa, H. Mano, M. Aizawa, H. Hano, K. Yanaga, T. Matsuura, Transplantation of liver organoids in the omentum and kidney, Artif. Organs 35 (2011) 80-83.

DOI: 10.1111/j.1525-1594.2010.01049.x

Google Scholar

[25] M. Vanderheyden, L. Defize, Twenty one years of P19 cells: what an embryonal carcinoma cell line taught us about cardiomyocyte differentiation, Cardiovasc. Res. 58 (2003) 292-302.

DOI: 10.1016/s0008-6363(02)00771-x

Google Scholar

[26] A. Astashkina, B. Mann, D.W. Grainger, A critical evaluation of in vitro cell culture models for high-throughput drug screening and toxicity, Pharmacol. Ther. 134 (2012) 82-106.

DOI: 10.1016/j.pharmthera.2012.01.001

Google Scholar