Fabrication of Hydroxyapatite/Cellulose Fiber Composite with Sheet-Like Structure

Article Preview

Abstract:

Natural bone is a complex material with well-designed architecture. To achieve successful bone integration and regeneration, the constituent and structure of bone-repairing scaffolds need to be flexible and biocompatible. HAp, as the main composition of bone minerals, has excellent biocompatibility, while CMC comprised of a three-dimensional network were high flexibility. Therefore, CMC/HAp composite have been attracted attention due to the development of bone tissue engineering. In this work, carboxymethyl cellulose (CMC)/hydroxyapatite (Ca10(PO4)6(OH)2; HAp) composite have been developed as three-dimensional scaffold for bone tissue engineering. Scanning electron microscopy revealed that the CMC/HAp composite have sheet-like structure. The amount of precipitated HAp of CMC/HAp composite was investigated using Thermogravimetric analysis. The amount of precipitated HAp in products prepared with 100 mg CMC was 49.8 wt%, while the amount of precipitated HAp in products prepared with 1000 mg CMC was 22.3 wt%. These results revealed that the amount of precipitated HAp in CMC/HAp composite was affected by CMC amount as prepared.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

98-102

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Petite, V. Viateau, W. Bensaid, A. Meunier, C. de Pollak, M. Bourguignon, K. Oudina, L. Sedel, G. Guillemin, Tissue-engineered bone regeneration, Nature 18 (2000) 959-963.

DOI: 10.1038/79449

Google Scholar

[2] D. Tang, R. S. Tare, L. Y. Yang, D. F. Williams, K. L. Ou, R. O. C. Oreffo, Biofabrication of bone tissue: Approaches, challenges and translation for bone regeneration, Biomaterials 83 (2016) 363-382.

DOI: 10.1016/j.biomaterials.2016.01.024

Google Scholar

[3] M. D. Hoffman, C. Xie, X. Zhang, D. S. Benoit, The effect of mesenchymal stem cells delivered via hydrogel-based tissue engineered periosteum on bone allograft healing, Biomaterials 34 (2013) 8887-8889.

DOI: 10.1016/j.biomaterials.2013.08.005

Google Scholar

[4] S. Wu, X. Liu, K. W. K. Yeung, C. Liu, X. Yang, Biomimetic porous scaffolds for bone tissue engineering, Mater. Sci. Eng. R Rep. 80 (2014) 1-36.

Google Scholar

[5] R. Murugan, S. Ramakrishna, Bioresorbable composite bone paste using polysaccharide based nano hydroxyapatite, Biomaterials 25 (2004) 3829-3835.

DOI: 10.1016/j.biomaterials.2003.10.016

Google Scholar

[6] M. Kikuchi, S. Itoh, S. Ichinose, J. Tanaka, Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vitro, Biomaterials 22 (2001) 1705-1711.

DOI: 10.1016/s0142-9612(00)00305-7

Google Scholar

[7] H. W. Kim, H. E. Kim, V. Salih, Stimulation of osteoblast responses to biomimetic nanocomposites of gelatin-hydroxyapatite for tissue engineering scaffolds, Biomaterials 26 (2005) 5221-5230.

DOI: 10.1016/j.biomaterials.2005.01.047

Google Scholar

[8] W. Jie, L. Yubao, Tissue engineering scaffold material of nano-apatite crystals and polyamide composite, Eur. Polym. J. 40 (2004) 509-515.

DOI: 10.1016/j.eurpolymj.2003.10.028

Google Scholar

[9] H. Wang, Y. Li, Y. Zuo, J. Li, S. Ma, L. Cheng, Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering, Biomaterials 28 (2007) 3338-3348.

DOI: 10.1016/j.biomaterials.2007.04.014

Google Scholar

[10] G. Wei, P. X. Ma, Structure and properties of nano-hydroxyapatite/ polymer composite scaffolds for bone tissue engineering, Biomaterials 25 (2004) 4749-4757.

DOI: 10.1016/j.biomaterials.2003.12.005

Google Scholar

[11] S. S. Kim, M. S. Park, O. Jeon, C. Y. Choi, B. S. Kim, Poly(lactide-co-glycolide)/hydroxyapatite scaffolds for bone tissue engineering, Biomaterials 27 (2006) 1399-1409.

DOI: 10.1016/j.biomaterials.2005.08.016

Google Scholar

[12] D. R. Biswal, R. P. Singh, Flocculation studies based on water-soluble polymers of grafted carboxymethyl cellulose and polyacrylamide, J. Appl. Polym. Sci. 102 (2006) 1000-1007.

DOI: 10.1002/app.24016

Google Scholar

[13] C. H. N. Sieger, A. G. M. Kroon, J. G. Batelaan, C. G. V. Ginkel, Biodegradation of carboxymethyl celluloses by Agrobacterium CM-1, Carbohydr. Polym. 27 (1995) 137-143.

DOI: 10.1016/0144-8617(95)00039-a

Google Scholar

[14] E. K. Just, T. G. Majewicz, Encyclopedia of Polymer Science and Technology, second ed., Herman F. Mark, New York, 1989, p.226.

Google Scholar

[15] D. L. He, L. L. Bao, Y. M. Long, W. Z. Wei, S. Z. Yao, A new study of the enzymatic hydrolysis of carboxymethyl cellulose with a bulk acoustic wave sensor, Talanta 50 (2000) 1267-1273.

DOI: 10.1016/s0039-9140(99)00229-5

Google Scholar

[16] F. Nagata, T. Miyajima, K. Kato, Preparation of phylloquinone-loaded poly(lactic acid)/hydroxyapatite core-shell particles and their drug release behavior, Adv. Powder Technol. 27 (2016) 903-907.

DOI: 10.1016/j.apt.2016.02.007

Google Scholar