Structural Characterization of Mg-0.5Ca-xY Biodegradable Alloys

Article Preview

Abstract:

In recent years, researchers have been able to identify new materials with special properties that can be used in major medical fields. Magnesium-based materials used in orthopedics are an important alternative, being the third generation of biocompatible materials. A biodegradable magnesium-based material has the ability to degrade at a certain rate, is biocompatible, and together with other alloying elements ensures osteointegration. Mg-0.5Ca-xY biodegradable alloys will be developed in an induction melting furnace using ceramic crucibles, melting at 710-720 °C in the controlled atmosphere of 5.0 Ar. SEM analyses and X-ray diffraction reveals the size distribution of Mg-sized grains, with a hexagonal lattice and formation of compounds with the two alloying elements: Mg2Ca, Mg2Y, Mg24Y5 uniformly arranged in the α-Mg matrix. The alloying elements influence the microstructure, the size of the α-Mg grains decreasing considerably.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

129-135

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y.F. Zheng, X.N. Gu, F. Witte, Biodegradable metals, Materials Science and Engineering: R: Reports 77 (2014) 1-34.

Google Scholar

[2] S. Bălţatu, P. Vizureanu, D. Mareci, L.C. Burtan, C. Chiruţă, L.C. Trincă, Effect of Ta on the electrochemical behavior of new TiMoZrTa alloys in artificial physiological solution simulating in vitro inflammatory conditions, Materials and Corrosion 67(12) (2016).

DOI: 10.1002/maco.201609041

Google Scholar

[3] M.G. Minciuna, P. Vizureanu, D.C. Achiţei, A.V. Sandu, The advanced characterization of a new alloy by Co-Cr-Mo system, JOAM 18(7-8) 2016 717-722.

Google Scholar

[4] J.V. Rau, I. Antoniac, M. Fosca, A. De Bonis, A.I. Blajan, C. Cotrut, V. Graziani, M. Curcio, A. Cricenti, M. Niculescu, M. Ortenzi, R. Teghil, Glass-ceramic coated Mg-Ca alloys for biomedical implant applications, Materials Science and Engineering C 64 (2016).

DOI: 10.1016/j.msec.2016.03.100

Google Scholar

[5] Y.M. Kim, C.D. Yim, H.S. Kim, B.S. You, Key factor influencing the ignition resistance of magnesium alloys at elevated temperatures, Scripta Materialia 65 (2011) 958–961.

DOI: 10.1016/j.scriptamat.2011.08.019

Google Scholar

[6] El-Rahman, S.S.A., Neuropathology of aluminum toxicity in rats (glutamate and GABA impairment), Pharmacological Research 47 (2003) 189–194.

DOI: 10.1016/s1043-6618(02)00336-5

Google Scholar

[7] Z.P. Lu, C.T. Liu, W.D. Porter, Role of yttrium in glass formation of Fe-based bulk metallic glasses, Appl. Phys. Lett. 83 (2003) 2581.

DOI: 10.1063/1.1614833

Google Scholar

[8] X. Gu, Y. Zheng, Y. Cheng, S. Zhong, T. Xi, In vitro corrosion and biocompatibility of binary magnesium alloys, Biomaterials 30 (2009) 484–498.

DOI: 10.1016/j.biomaterials.2008.10.021

Google Scholar

[9] H. Zhang, J. Feng, W.F. Zhu, C.Q. Liu, D.S. Wu, W.J. Yang, J.H. Gu, 2000. Rare-earth element distribution characteristics of biological chains in rare-earth element-high background regions and their implications. Biological Trace Element Research 73, 19–27.

DOI: 10.1385/bter:73:1:19

Google Scholar

[10] T. Takenaka, T. Ono, Y. Narazaki, Y. Naka, M. Kawakami, Improvement of corrosion resistance of magnesium metal by rare earth elements, Electrochimica Acta 53(1) (2007) 117-121.

DOI: 10.1016/j.electacta.2007.03.027

Google Scholar

[11] D. Mareci, G. Bolat, J. Izquiero C. Crimu, C. Munteanu, I. Antoniac, R.M. Souto, Electrochemical characteristics of bioresorbable binary MgCa alloys in Ringer's solution: Revealing the impact of local pH distributions during in-vitro dissolution, MSE C 60 (2016).

DOI: 10.1016/j.msec.2015.11.069

Google Scholar

[12] X.Y. Fanga, D.Q. Yi, J.F. Nie, X.J. Zhang, B. Wang, L.R. Xiao, Effect of Zr, Mn and Sc additions on the grain size of Mg–Gd alloy, Journal of Alloys and Compounds 470 (2009) 311–316.

DOI: 10.1016/j.jallcom.2008.02.069

Google Scholar

[13] Z. Jin-shan, D. Hong-wei, L. Bin-feng, Z. Yan, L. Wei, C. Xiang, L. Feng-lei, Effect of Ca on crystallization of Mg-based master alloy containing spherical quasicrystal, Trans. Nonferrous Met. SOC. China 17(2007) 273-279.

DOI: 10.1016/s1003-6326(07)60084-3

Google Scholar

[14] H.R.B. Rad, M.H. Idris, M.R.A. Kadir, S. Farahany, Microstructure analysis and corrosion behavior of biodegradable Mg–Ca implant alloys, Materials and Design 33 (2012) 88–97.

DOI: 10.1016/j.matdes.2011.06.057

Google Scholar

[15] Z. Li, X. Gu, S. Lou, Y. Zheng, The development of binary Mg-Ca alloys for use as biodegradable materials within bone, Biomaterials 29 (2008) 1329-1344.

DOI: 10.1016/j.biomaterials.2007.12.021

Google Scholar

[16] R. Xiaodong, L. Xuesong, Y. Yue, Y. You, W. Hua, Corrosion Behavior and Electrochemical Properties of As-cast Mg-2Zn-0.5Ca-Y Series Magnesium Alloys in Hank's Solution and NaCl Solution, Rare Metal Materials and Engineering 46(1) (2017).

DOI: 10.1016/s1875-5372(17)30075-9

Google Scholar

[17] H.R.B. Rad, M. Abdellahi, E. Hamzah, A. F. Ismail, M. Bahmanpour, Modelling corrosion rate of biodegradable magnesium-based alloys: The case study of Mg-Zn-RE-xCa (x ¼ 0, 0.5, 1.5, 3 and 6 wt%) alloys, Journal of Alloys and Compounds 687 (2016).

DOI: 10.1016/j.jallcom.2016.06.149

Google Scholar

[18] R. Chelariu, L.C. Trinca, C. Munteanu, G. Bolat, D. Sutiman, D. Mareci, R.M. Souto, Corrosion behavior of new quaternary ZrNbTiAl alloys in simulated physiological solution using electrochemical techniques and surface analysis methods, Electrochimica Acta 248 (2017).

DOI: 10.1016/j.electacta.2017.07.157

Google Scholar

[19] https://erris.gov.ro/Centrul-de-Cercetare-in-Ingi-2.

Google Scholar

[20] S. Lupescu, B. Istrate, C. Munteanu, M.G. Minciuna, S. Focsaneanu, K. Earar, Characterization of some master Mg-X System (Ca, Mn, Zr, Y) alloys used in medical applications, REV.CHIM. 68(6) (2017) 1408-1413.

DOI: 10.37358/rc.17.6.5664

Google Scholar

[21] C.I Crimu, B. Istrate, C. Munteanu, I. Antoniac, M.N. Matei, K. Earar, XRD and microstructural analyses on biodegradable Mg alloys, Key Engineering Materials 638 (2014) 79-84.

DOI: 10.4028/www.scientific.net/kem.638.79

Google Scholar