MC3T3-E1 Cellular Response and Protein Detection on Surface Potential-Controlled TiO2 Scale in Serum-Containing Medium

Article Preview

Abstract:

MC3T3-E1 cell differentiation and related surface potentials of rutile-type TiO2 scales formed on Ti are controlled by varying the Ti heat treatment conditions in a N2 atmosphere containing a trace amount of O2. The zeta potentials of the samples heated at 873 and 973 K for 1 h show large negative and positive values, respectively, while cell differentiation on the surface is enhanced in both cases (14 days incubation). In the case of untreated Ti, the cell differentiation diminishes and the zeta potential becomes more neutral. Protein detection by an immunogold-labeling technique and Ca and P detection by time-of-flight secondary ion mass spectrometry reveal that Ca and P, rather than an adhesive protein such as fibronectin, predominantly adsorbed on the scales formed in 1 h at 873 and 973 K, respectively. In the case of untreated Ti, both fibronectin and a non-adhesive protein such as albumin adsorbed, but no Ca and P were detected. The present findings illuminate the relationship between charged surfaces and MC3T3-E1 cellular response.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

218-223

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Grinnell, M. K. Feld, Adsorption characteristics of plasma fibronectin in relationship to biological activity, J. Biomed. Mater. Res. 15 (1981) 363-381.

DOI: 10.1002/jbm.820150308

Google Scholar

[2] D.L. Coleman, D.E. Gregonis, J.D. Andrade, Blood-materials interactions: the minimum interfacial free energy and the optimum polar/apolar ratio hypotheses, J. Biomed. Mater. Res. 16 (1982) 381-398.

DOI: 10.1002/jbm.820160407

Google Scholar

[3] A.S. Hoffman, Letter to the editor: A general classification scheme for hydrophilic and hydrophobic biomaterial surfaces, J. Biomed. Mater. Res. 20 (1986) ix-xi.

DOI: 10.1002/jbm.820200903

Google Scholar

[4] J. M. Schakenraad, J. Arends, H. J. Busscher, F. Dijk, P. B. van Wachem, C. R. H. Wildevuur, Kinetics of cell spreading on protein precoated substrate: a study of interfacial aspects, Biomaterials, 10 (1989) 43-50.

DOI: 10.1016/0142-9612(89)90008-2

Google Scholar

[5] S. D. Johnson, J. M. Anderson, R. E. Marchant, Biocompatibility studies on plasm polymerized interface materials encompassing both hydrophobic and hydrophilic surfaces, J. Biomed. Mater. Res. 26 (1992) 915-935.

DOI: 10.1002/jbm.820260707

Google Scholar

[6] J. F. Schultz and D. R. Armant, Beta 1- and beta 3-class integrins mediate fibronectin binding activity at the surface of developing mouse peri-implantation blastocysts. Regulation by ligand-induced mobilization of stored receptor, J. Biol. Chem. 270 (1995).

DOI: 10.1074/jbc.270.19.11522

Google Scholar

[7] H. M. Kim, F. Miyaji, T. Kokubo, T. Nakamura, Preparation of bioactive Ti and its alloys via simple chemical surface treatment, J. Biomed. Mater. Res. 32 (1996) 409-417.

DOI: 10.1002/(sici)1097-4636(199611)32:3<409::aid-jbm14>3.0.co;2-b

Google Scholar

[8] M. Uchida, H. M. Kim, T. Kokubo, S. Fujibayashi, T. Nakamura, Effect of water treatment on the apatite-forming ability of NaOH-treated titanium metal, J. Biomed. Mater. Res. (Appl. Biomater.) 63 (2002) 522-530.

DOI: 10.1002/jbm.10304

Google Scholar

[9] T. Kokubo, D. K. Pattanayak, S. Yamaguchi, H. Takadama, T. Matsushita, T. Kawai, M. Takemoto, S. Fujibayashi, T. Nakamura, Positively charged bioactive Ti metal prepared by simple chemical and heat treatments, J. R. Soc. Interface 7 (2010).

DOI: 10.1098/rsif.2010.0129.focus

Google Scholar

[10] S. Yamaguchi, H. Takadama, T. Matsushita, T. Nakamura, T. Kokubo, Preparation of bioactive Ti-15Zr-4Nb-4Ta alloy from HCl and heat treatments after an NaOH treatment, J. Biomed. Mater. Res. A 97A (2011) 135-144.

DOI: 10.1002/jbm.a.33036

Google Scholar

[11] C. Ohtsuki, H. Iida, S. Hayakawa, A. Osaka, Bioactivity of titanium treated with hydrogen peroxide solutions containing metal chlorides, J. Biomed. Mater. Res. 35 (1997) 39-47.

DOI: 10.1002/(sici)1097-4636(199704)35:1<39::aid-jbm5>3.0.co;2-n

Google Scholar

[12] X. X. Wang, S. Hayakawa, K. Tsuru, A. Osaka, A comparative study of in vitro apatite deposition on heat-, H2O2-, and NaOH-treated titanium surfaces, J. Biomed. Mater. Res. 54 (2001) 172-178.

DOI: 10.1002/1097-4636(200102)54:2<172::aid-jbm3>3.0.co;2-#

Google Scholar

[13] X. X. Wang, W. Yan, S. Hayakawa, K. Tsuru, A. Osaka, Apatite deposition on thermally and anodically oxidized titanium surfaces in a simulated body fluid, Biomaterials 24 (2003) 4631-4637.

DOI: 10.1016/s0142-9612(03)00357-0

Google Scholar

[14] A. Sugino, K. Uetsuki, K. Tsuru, S. Hayakawa, C. Ohtsuki, A. Osaka, Gap effect on the heterogeneous nucleation of apatite on thermally oxidized titanium substrate, Key Eng. Mater. 361-363 (2008) 621-624.

DOI: 10.4028/www.scientific.net/kem.361-363.621

Google Scholar

[15] A. Sugino, K. Uetsuki, K. Tsuru, S. Hayakawa, A. Osaka, C. Ohtsuki, Surface topography designed to provide osteoconductivity to titanium after thermal oxidation, Mater. Trans. 49 (2008) 428-434.

DOI: 10.2320/matertrans.mbw200711

Google Scholar

[16] T. Shozui, K. Tsuru, S. Hayakawa, A. Osaka, Enhancement of in vitro apatite-forming ability of thermally oxidized titanium surfaces by ultraviolet irradiation, J. Ceram. Soc. Jpn. 116 (2008) 530-535.

DOI: 10.2109/jcersj2.116.530

Google Scholar

[17] M. Hashimoto, K. Kashiwagi, S. Kitaoka, A nitrogen doped TiO2 layer on Ti metal for the enhanced formation of apatite, J. Mater. Sci. Mater. Med. 22 (2011) 2013-(2018).

DOI: 10.1007/s10856-011-4389-1

Google Scholar

[18] M. Hashimoto, K. Hayashi, S. Kitaoka, Enhanced apatite formation on Ti metal heated in PO2-controlled nitrogen atmosphere, Mat. Sci. Eng. C 33 (2013) 4155-4159.

DOI: 10.1016/j.msec.2013.06.003

Google Scholar

[19] M. Hashimoto, S. Kitaoka, S. Muto, K. Tatsumi, Y. Obata, The microstructure of scale formed by oxynitriding of Ti and exhibiting significant apatite-forming ability, J. Mater. Res. 31(8) (2016) 1004-1011.

DOI: 10.1557/jmr.2016.79

Google Scholar

[20] M. Hashimoto, S. Kitaoka, Y. Obata, S. Muto, T. Ogawa, M. Furuya, H. Kanetaka, Control of HAp formation and osteoconductivity on nitrogen-doped TiO2 scale formed by oxynitridation of Ti, Key Eng. Mat. 758 (2017) 86-89.

DOI: 10.4028/www.scientific.net/kem.758.86

Google Scholar

[21] M. Hashimoto, T. Ogawa, S. Kitaoka, S. Muto, M. Furuya, H. Kanetaka, M. Abe, H. Yamashita, Control of surface potential and hydroxyapatite formation on TiO2 scales containing nitrogen-related defects, Acta Materialia, 155 (2018) 379-385.

DOI: 10.1016/j.actamat.2018.05.072

Google Scholar

[22] M. Kawashita, J. Hayashi, T. Kudo, H. Kanetaka, Z. Li, T. Miyazaki, MC3T3-E1 and RAW264.7 cell response to hydroxyapatite and alpha-type alumina adsorbed with bovine serum albumin, J. Biomed. Mater. Res. Part A 102A (2014) 1880-1886.

DOI: 10.1002/jbm.a.34861

Google Scholar

[23] M. Hasegawa, T. Kudo, H. Kanetaka, T. Miyazaki, M. Hashimoto, M. Kawashita, Fibronectin adsorption on osteoconductive hydroxyapatite and non-osteoconductive a-alumina, Biomed. Mater. 11 (2016) 045006.

DOI: 10.1088/1748-6041/11/4/045006

Google Scholar