Loading of Fluvastatin onto Gelatin-Coated Titanium Implants

Article Preview

Abstract:

We aimed to investigate the effects of alumina blasting and alkaline treatment on the immobilization of gelatin-fluvastatin complexes on titanium disks. Blasted titanium disks were submicron-sized porous while the alkaline treated disks were submicron-and nanoporous. XPS analysis revealed homogeneous coverage of titanium disks with a gelatin layer on top of an intermediate polydopamine treatment. The highest amount of fluvastatin immobilization was observed on top of alkaline treated titanium as compared to the blasted disk. A combination of alkaline pre-treatment followed by polydopamine-assisted immobilization of gelatin facilitated optimal loading of fluvastatin onto titanium dental implants.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] W. Att, N. Hori, M. Takeuchi, J. Ouyang, Y. Yang, M Anpo M, et al. Time-dependent degradation of titanium osteoconductivity: an implication of biological aging of implant materials. Biomaterials 30 (2009) 5352-5363.

DOI: 10.1016/j.biomaterials.2009.06.040

Google Scholar

[2] G. Mendonca, D.B. Mendonca, F.J. Aragao, L.F. Cooper. The combination of micron and nanotopography by H2SO4/H2O2 treatment and its effects on osteoblast-specific gene expression of hMSCs. J Biomed Mater Res A 94 (2010) 169-179.

DOI: 10.1002/jbm.a.32701

Google Scholar

[3] P. Rajesh, C.V. Muraleedharan, M. Komath, H. Varma. Pulsed laser deposition of hydroxyapatite on titanium substrate with titania interlayer. J Mater Sci Mater Med 22 (2011) 497-505.

DOI: 10.1007/s10856-011-4230-x

Google Scholar

[4] H.S. Alghamdi, R. Bosco, J.J. van den Beucken, X.F. Walboomers, J.A. Jansen. Osteogenicity of titanium implants coated with calcium phosphate or collagen type-I in osteoporotic rats. Biomaterials 34 (2013) 3747-3757.

DOI: 10.1016/j.biomaterials.2013.02.033

Google Scholar

[5] S. Nishiguchi, T. Nakamura, M. Kobayashi, H.M. Kim, F. Miyaji, T. Kokubo. The effect of heat treatment on bone-bonding ability of alkali-treated titanium. Biomater 20 (1999) 491-500.

DOI: 10.1016/s0142-9612(98)90203-4

Google Scholar

[6] T. Kokubo, F. Miyaji, H.M. Kim, T. Nakamura. Spontaneous formation of bonelike apatite layer on chemically treated titanium metals. J Am Ceram Soc 79 (1996) 1127-1129.

DOI: 10.1111/j.1151-2916.1996.tb08561.x

Google Scholar

[7] K. Tanabe, H. Nomoto, N. Okumori, T. Miura, M. Yoshinari. Osteogenic effect of fluvastatin combined with biodegradable gelatin-hydrogel. Dent Mater J 31 (2012) 489-493.

DOI: 10.4012/dmj.2012-008

Google Scholar

[8] T. Ohira, K. Tanabe, H. Sasaki, M. Yoshinari, Y. Yajima. Effect of locally applied fluvastatin in low-turnover osteoporosis model mouse with femur bone defect. J Hard Tissue Biology 24 (2015) 147-154.

DOI: 10.2485/jhtb.24.147

Google Scholar

[9] M. Yoshinari, T. Hayakawa, K. Matsuzaka, T. Inoue, Y. Oda, M. Shimono M, et al. Oxygen plasma surface modification enhances immobilization of simvastatin acid. Biomed Res (Tokyo). 27 (2006) 29-36.

DOI: 10.2220/biomedres.27.29

Google Scholar

[10] H. Yasuda, K. Tanabe, T. Sato, S. Nomoto, T. Miura, M. Yoshinari. Osteogenic effect of local administration of fluvastatin using a fluvastatingelatin complex in senile osteoporosis model rats. J Hard Tissue Biology 23 (2014) 389-398.

DOI: 10.2485/jhtb.23.389

Google Scholar

[11] F. Yang, S.F. Zhao, F. Zhang, F.M. He, G.L. Yang. Simvastatin-loaded porous implant surfaces stimulate preosteoblasts differentiation: an in vitro study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 111 (2011) 551-556.

DOI: 10.1016/j.tripleo.2010.06.018

Google Scholar

[12] G. Mundy, R. Garrett, S. Harris, J. Chan, D. Chen, G. Rossini, et al. Stimulation of bone formation in vitro and in rodents by statins. Science 286 (1999) 1946-(1949).

DOI: 10.1126/science.286.5446.1946

Google Scholar

[13] M. Herrero-Climent, P. Lazaro, J. Vicente Rios, S. Lluch, M. Marques, J. Guillem-Marti, et al. Influence of acid-etching after grit-blasted on osseointegration of titanium dental implants: in vitro and in vivo studies. J Mater Sci Mater Med 24 (2013).

DOI: 10.1007/s10856-013-4935-0

Google Scholar

[14] H.M. Kim, F. Miyaji, T. Kokubo, T. Nakamura. Preparation of bioactive Ti and its alloys via simple chemical surface treatment. J Biomed Mater Res 32 (1996) 409-417.

DOI: 10.1002/(sici)1097-4636(199611)32:3<409::aid-jbm14>3.0.co;2-b

Google Scholar

[15] H.M. Kim, F. Miyaji, T. Kokubo, T. Nakamura. Effect of heat treatment on apatite-forming ability of Ti metal induced by alkali treatment. J Mater Sci Mater Med 8 (1997) 341-347.

Google Scholar