[1]
W. Att, N. Hori, M. Takeuchi, J. Ouyang, Y. Yang, M Anpo M, et al. Time-dependent degradation of titanium osteoconductivity: an implication of biological aging of implant materials. Biomaterials 30 (2009) 5352-5363.
DOI: 10.1016/j.biomaterials.2009.06.040
Google Scholar
[2]
G. Mendonca, D.B. Mendonca, F.J. Aragao, L.F. Cooper. The combination of micron and nanotopography by H2SO4/H2O2 treatment and its effects on osteoblast-specific gene expression of hMSCs. J Biomed Mater Res A 94 (2010) 169-179.
DOI: 10.1002/jbm.a.32701
Google Scholar
[3]
P. Rajesh, C.V. Muraleedharan, M. Komath, H. Varma. Pulsed laser deposition of hydroxyapatite on titanium substrate with titania interlayer. J Mater Sci Mater Med 22 (2011) 497-505.
DOI: 10.1007/s10856-011-4230-x
Google Scholar
[4]
H.S. Alghamdi, R. Bosco, J.J. van den Beucken, X.F. Walboomers, J.A. Jansen. Osteogenicity of titanium implants coated with calcium phosphate or collagen type-I in osteoporotic rats. Biomaterials 34 (2013) 3747-3757.
DOI: 10.1016/j.biomaterials.2013.02.033
Google Scholar
[5]
S. Nishiguchi, T. Nakamura, M. Kobayashi, H.M. Kim, F. Miyaji, T. Kokubo. The effect of heat treatment on bone-bonding ability of alkali-treated titanium. Biomater 20 (1999) 491-500.
DOI: 10.1016/s0142-9612(98)90203-4
Google Scholar
[6]
T. Kokubo, F. Miyaji, H.M. Kim, T. Nakamura. Spontaneous formation of bonelike apatite layer on chemically treated titanium metals. J Am Ceram Soc 79 (1996) 1127-1129.
DOI: 10.1111/j.1151-2916.1996.tb08561.x
Google Scholar
[7]
K. Tanabe, H. Nomoto, N. Okumori, T. Miura, M. Yoshinari. Osteogenic effect of fluvastatin combined with biodegradable gelatin-hydrogel. Dent Mater J 31 (2012) 489-493.
DOI: 10.4012/dmj.2012-008
Google Scholar
[8]
T. Ohira, K. Tanabe, H. Sasaki, M. Yoshinari, Y. Yajima. Effect of locally applied fluvastatin in low-turnover osteoporosis model mouse with femur bone defect. J Hard Tissue Biology 24 (2015) 147-154.
DOI: 10.2485/jhtb.24.147
Google Scholar
[9]
M. Yoshinari, T. Hayakawa, K. Matsuzaka, T. Inoue, Y. Oda, M. Shimono M, et al. Oxygen plasma surface modification enhances immobilization of simvastatin acid. Biomed Res (Tokyo). 27 (2006) 29-36.
DOI: 10.2220/biomedres.27.29
Google Scholar
[10]
H. Yasuda, K. Tanabe, T. Sato, S. Nomoto, T. Miura, M. Yoshinari. Osteogenic effect of local administration of fluvastatin using a fluvastatingelatin complex in senile osteoporosis model rats. J Hard Tissue Biology 23 (2014) 389-398.
DOI: 10.2485/jhtb.23.389
Google Scholar
[11]
F. Yang, S.F. Zhao, F. Zhang, F.M. He, G.L. Yang. Simvastatin-loaded porous implant surfaces stimulate preosteoblasts differentiation: an in vitro study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 111 (2011) 551-556.
DOI: 10.1016/j.tripleo.2010.06.018
Google Scholar
[12]
G. Mundy, R. Garrett, S. Harris, J. Chan, D. Chen, G. Rossini, et al. Stimulation of bone formation in vitro and in rodents by statins. Science 286 (1999) 1946-(1949).
DOI: 10.1126/science.286.5446.1946
Google Scholar
[13]
M. Herrero-Climent, P. Lazaro, J. Vicente Rios, S. Lluch, M. Marques, J. Guillem-Marti, et al. Influence of acid-etching after grit-blasted on osseointegration of titanium dental implants: in vitro and in vivo studies. J Mater Sci Mater Med 24 (2013).
DOI: 10.1007/s10856-013-4935-0
Google Scholar
[14]
H.M. Kim, F. Miyaji, T. Kokubo, T. Nakamura. Preparation of bioactive Ti and its alloys via simple chemical surface treatment. J Biomed Mater Res 32 (1996) 409-417.
DOI: 10.1002/(sici)1097-4636(199611)32:3<409::aid-jbm14>3.0.co;2-b
Google Scholar
[15]
H.M. Kim, F. Miyaji, T. Kokubo, T. Nakamura. Effect of heat treatment on apatite-forming ability of Ti metal induced by alkali treatment. J Mater Sci Mater Med 8 (1997) 341-347.
Google Scholar