[1]
S. Shigemitsu, N. Sugiyama, K. Oribe, M. Rikukawa and M. Aizawa, Fabrication of biodegradable β-tricalcium phosphate/poly(L-lactic acid) hybrids and their in vitro biocompatibility, J. Ceram. Soc. Japan. 118 (2010) 1181-1187.
DOI: 10.2109/jcersj2.118.1181
Google Scholar
[2]
I.D. Xynos, A.J. Edgar, L.D.K. Buttery, L.L. Hench and J.M. Polak, Ionic Products of Bioactive Glass Dissolution Increase Proliferation of Human Osteoblasts and Induce Insulin-like Growth Factor II mRNA Expression and Protein Synthesis, Biochem. Biophys. Res. Comm. 276 (2000).
DOI: 10.1006/bbrc.2000.3503
Google Scholar
[3]
T. Kasuga, A. Obata, H. Maeda, H. Maeda, Y. Ota, X. Yao and K. Oribe, Siloxane-poly(lactic acid)-vaterite composites with 3D cotton-like structure, J. Mater. Sci. Mater. Med. 23 (2012) 2349‒2357.
DOI: 10.1007/s10856-012-4607-5
Google Scholar
[4]
T. Kasuga, H. Maeda, K. Kato, M. Nogami, K. Hata and M. Ueda, Preparation of poly(lactic acid) composites containing calcium carbonate (vaterite). Biomaterials. 24 (2003) 3247–3253.
DOI: 10.1016/s0142-9612(03)00190-x
Google Scholar
[5]
M. Fini, A. Motta, P. Torricelli, G. Giavaresi, N. Aldini, M. Tschon, R. Giardino and C. Migliaresi, The healing of confined critical size cancellous defects in the presence of silk fibroin hydrogel, Biomaterials. 26 (2005) 3527-3536.
DOI: 10.1016/j.biomaterials.2004.09.040
Google Scholar
[6]
E.M. Lindley, F.A. Guerra, J.T. Krauser, S.M. Matos, E.L. Burger and V.V. Patel, Small peptide (P-15) bone substitute efficacy in a rabbit cancellous bone model, J. Biomed. Mater. Res. B: Appl. Biomater. 94 (2010) 463-468.
DOI: 10.1002/jbm.b.31676
Google Scholar
[7]
M.T. Mushipe, P.A. Revell and J.C. Shelton, Cancellous bone repair using bovine trabecular bone matrix particulates, Biomaterials. 23 (2002) 365-370.
DOI: 10.1016/s0142-9612(01)00114-4
Google Scholar
[8]
T.E. Orr, P.A. Villars, S.L. Mitchell, H.P. Hsu and M. Spector, Compressive properties of cancellous bone defects in a rabbit model treated with particles of natural bone mineral and synthetic hydroxyapatite, Biomaterials. 22 (2001) 1953-(1959).
DOI: 10.1016/s0142-9612(00)00370-7
Google Scholar
[9]
M. Vogel, C. Voigt, U.M. Gross and C.M. Muller-Mai, In vivo comparison of bioactive glass particles in rabbits, Biomaterials. 22 (2001) 357-362.
DOI: 10.1016/s0142-9612(00)00191-5
Google Scholar
[10]
M.J. Voor, J.J.C. Arts, S.A. Klein, L.H.B. Walschot, N. Verdonschot and P. Buma, Is hydroxyapatite cement an alternative for allograft bone chips in bone grafting procedures? A mechanical and histological study in a rabbit cancellous bone defect model, J. Biomed. Mater. Res. B: Appl. Biomater. 71 (2004).
DOI: 10.1002/jbm.b.30109
Google Scholar
[11]
C.H. Tsai, R.M. Lin, C.P. Ju and J.H.C. Lin, Bioresorption behavior of tetracalcium phosphate-derived calcium phosphate cement implanted in femur of rabbits, Biomaterials. 29 (2008) 984-993.
DOI: 10.1016/j.biomaterials.2007.10.014
Google Scholar