[1]
D.S. Brauer, C. Rüssel, W. Li, S. Habelitz, Effect of degradation rates of resorbable phosphate invert glasses on in vitro osteoblast proliferation, J. Biomed. Mater. Res. A, 77 (2006)213-219.
DOI: 10.1002/jbm.a.30610
Google Scholar
[2]
T. Kasuga, Y. Ota, K. Tsuji, Y. Abe, Preparation of high-strength calcium phosphate ceramics with low modulus of elasticity containing β-Ca(PO3)2 fibers, J. Am. Ceram. Soc., 79 (1996) 1821-1824.
DOI: 10.1111/j.1151-2916.1996.tb08001.x
Google Scholar
[3]
T. Kasuga, Y. Abe, Calcium phosphate invert glasses with soda and titania, J. Non-Cryst. Solids, 243 (1999) 70-74.
DOI: 10.1016/s0022-3093(98)00820-5
Google Scholar
[4]
T. Kasuga, M. Nogami, M. Niinomi, T. Hattori, Bioactive calcium phosphate invert glass-ceramic coating on b-type Ti-29Nb-13Ta-4.6Zr alloy, Biomaterials, 24 (2003) 283-290.
DOI: 10.1016/s0142-9612(02)00316-2
Google Scholar
[5]
M.A. Karakassides, A. Saranti, I. Koutselas, Preparation and structural study of binary phosphate glasses with high calcium and/or magnesium content, J. Non-Cryst. Solids, 347 (2004) 69-79.
DOI: 10.1016/j.jnoncrysol.2004.08.111
Google Scholar
[6]
D.S. Brauer, R.M. Wilson, T. Kasuga, Multicomponent phosphate invert glasses with improved processing, J. Non-Cryst. Solids, 358 (2012) 1720-1723.
DOI: 10.1016/j.jnoncrysol.2012.04.027
Google Scholar
[7]
A. Stunda-Zujeva, J. Vecstaudza, G. Krieke, L. Berzina-Cimdina, Glass formation and crystallization in P2O5-Nb2O5-CaO-Na2O system, Mater. Sci. Appl. Chem., 34 (2017) 21-28.
DOI: 10.1515/msac-2017-0003
Google Scholar
[8]
D. S. L. Weiss, R. D. Torres, S. Buchner, S. Blunk, P. Soares, Effect of Ti and Mg dopants on the mechanical properties, solubility, and bioactivity in vitro of a Sr-containing phosphate based glass, J. Non-Cryst. Solids, 386 (2014) 34-38.
DOI: 10.1016/j.jnoncrysol.2013.11.036
Google Scholar
[9]
A. Obata, Y. Takahashi, T. Miyajima, K. Ueda, T. Narushima, T. Kasuga, Effects of niobium ions released from calcium phosphate invert glasses containing Nb2O5 on osteoblast-like cell functions, ACS Appl. Mater. Interfaces, 4 (2012) 5684-5690.
DOI: 10.1021/am301614a
Google Scholar
[10]
Y. Yang, K. Kim, J. L. Ong, A review on calcium phosphate coatings produced using a sputtering process – an alternative to plasma spraying, Biomaterials, 26 (2005) 327-337.
DOI: 10.1016/j.biomaterials.2004.02.029
Google Scholar
[11]
M. Long, H. J. Rack, Titanium alloys in toal joint replacement – a materials science perspective, Biomaterials, 19 (1998) 1621-1639.
DOI: 10.1016/s0142-9612(97)00146-4
Google Scholar
[12]
S. Lee, H. Maeda, A. Obata, K. Ueda, T. Narushima, T. Kasuga, Structures and dissolution behaviors CaO-P2O5-TiO2/Nb2O5 (Ca/P ≥ 1) invert glasses, J. Non-Cryst. Solids, 426 (2015) 35-42.
DOI: 10.1016/j.jnoncrysol.2015.06.024
Google Scholar
[13]
H. Maeda, S. Lee, T. Miyajima, A. Obata, K. Ueda, T. Narushima, T. Kasuga, Structure and physicochemical properties of CaO-P2O5-Nb2O5-Na2O glasses, J. Non-Cryst. Solids, 432 (2016) 60-64.
DOI: 10.1016/j.jnoncrysol.2015.06.003
Google Scholar
[14]
N. Ohtsu, K. Sato, A. Yanagawa, K. Saito, Y. Imai, T. Kohgo, A. Yokoyama, K. Asami, T. Hanawa, CaTiO3 coating on titanium for biomaterial application – Optimum thickness and tissue response, J. Mater. Sci.: Mater. Med., 18 (2007) 1009-1016.
DOI: 10.1002/jbm.a.31136
Google Scholar
[15]
C. Ergun, H. Liu, J. W. Halloran, T. J. Webster, Increased osteoblast adhesion on nanograined hydroxyapatite and tricalcium phosphate containing calcium titanate, J. Biomed. Mater. Res. A, 80 (2007) 990-997.
DOI: 10.1002/jbm.a.30923
Google Scholar