Incorporation of Ovalbumin into Carbonate Apatite as a Candidate for Protein Delivery

Article Preview

Abstract:

Appropriate biomaterial and controlled size particle are the important component to achieve effective delivery system. Reducing size of the particle is recommended because it can overcome the barriers during cellular uptake. Biomimetic carbonate apatite (CHA) is now considered as candidate for protein delivery because it has high affinity to protein, high biocompatibility and biodegradibility, and increases protein stability. In this study, nano-CHA was prepared and ovalbumin (OVA) protein was incorporated into the CHA particles.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

27-31

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Arcos, M. Vallet-Regi, Bioceramics for drug delivery, Acta Mater. 61 (2013) 890–911.

DOI: 10.1016/j.actamat.2012.10.039

Google Scholar

[2] I. D. Ana, S. Matsuya, K. Ishikawa, Engineering of carbonate apatite bone substitute based on composition-transformation of gypsum and calcium hydroxide. Engineering 2010 344–352.

DOI: 10.4236/eng.2010.25045

Google Scholar

[3] S.V. Dorozhkin, Nanodimensional and nanocrystalline apatites and other calcium orthophosphates in biomedical engineering, biology and medicine, Materials (Basel). 2 (2009) 1975–(2045).

DOI: 10.3390/ma2041975

Google Scholar

[4] T. Hebishima, S. Tada, S. Takeshima, T. Akaike, Y. Ito, Y. Aida, Induction of antigen-specific immunity by pH-sensitive carbonate apatite as a potent vaccine carrier, Biochem. Biophys. Res. Commun. 415 (2011) 597–601.

DOI: 10.1016/j.bbrc.2011.10.114

Google Scholar

[5] S. Chadwick, C. Kriegel, M. Amiji, Nanotechnology solutions for mucosal immunization, Adv. Drug Deliv. Rev. 62 (2010) 394–407.

DOI: 10.1016/j.addr.2009.11.012

Google Scholar

[6] Y. Aktas, K. Andrieux, M. Jose, P. Calvo, P. Couvreur, Y. Capan, Preparation and in vitro evaluation of chitosan nanoparticles containing a caspase inhibitor. Int. J. Pharm. 298 (2005) 378–383.

DOI: 10.1016/j.ijpharm.2005.03.027

Google Scholar

[7] W. Fan, W. Yan, Z. Xu, H. Ni, Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique, Colloids Surfaces B Biointerfaces 90 (2012) 21–27.

DOI: 10.1016/j.colsurfb.2011.09.042

Google Scholar

[8] O.G. Jones, E.A. Decker, D.J. Mcclements, Comparison of protein–polysaccharide nanoparticle fabrication methods : Impact of biopolymer complexation before or after particle formation, J. Colloid Interface Sci. 344 (2010) 21–29.

DOI: 10.1016/j.jcis.2009.12.017

Google Scholar

[9] S. Papadimitriou, D. Bikiaris, K. Avgoustakis, E. Karavas, M. Georgarakis, Chitosan nanoparticles loaded with dorzolamide and pramipexole, Carbohydr. Polym. 73 (2008) 44–54.

DOI: 10.1016/j.carbpol.2007.11.007

Google Scholar

[10] M. Nara, H. Morii, M. Tanokura, Coordination to divalent cations by calcium-binding proteins studied by FTIR spectroscopy, Biochim. Biophys. Acta 1828 (2013) 2319–2327.

DOI: 10.1016/j.bbamem.2012.11.025

Google Scholar

[11] M. Mizuguchi, M. Nara, K. Kawano, K. Nitta, FT-IR study of the Ca2+-binding to bovine α-lactalbumin: Relationships between the type of coordination and characteristics of the bands due to the Asp COO- groups in the Ca2+ -binding site, FEBS Lett. 417 (1997).

DOI: 10.1016/s0014-5793(97)01274-x

Google Scholar

[12] M. Nara, H. Morii, F. Yumoto, H. Kagi, M. Tanokura, Fourier transform infrared spectroscopic study on the Ca2+ -bound coordination structures of synthetic peptide analogues of the calcium- binding site III of troponin c. Biopolymers 82 (2006).

DOI: 10.1002/bip.20477

Google Scholar

[13] J. Grdadolnik, Saturation effects in FTIR spectroscopy : Intensity of Amide I and Amide II bands in protein spectra, Acta Chim. Slov. 50 (2003) 777–788.

Google Scholar