[1]
D. Arcos, M. Vallet-Regi, Bioceramics for drug delivery, Acta Mater. 61 (2013) 890–911.
DOI: 10.1016/j.actamat.2012.10.039
Google Scholar
[2]
I. D. Ana, S. Matsuya, K. Ishikawa, Engineering of carbonate apatite bone substitute based on composition-transformation of gypsum and calcium hydroxide. Engineering 2010 344–352.
DOI: 10.4236/eng.2010.25045
Google Scholar
[3]
S.V. Dorozhkin, Nanodimensional and nanocrystalline apatites and other calcium orthophosphates in biomedical engineering, biology and medicine, Materials (Basel). 2 (2009) 1975–(2045).
DOI: 10.3390/ma2041975
Google Scholar
[4]
T. Hebishima, S. Tada, S. Takeshima, T. Akaike, Y. Ito, Y. Aida, Induction of antigen-specific immunity by pH-sensitive carbonate apatite as a potent vaccine carrier, Biochem. Biophys. Res. Commun. 415 (2011) 597–601.
DOI: 10.1016/j.bbrc.2011.10.114
Google Scholar
[5]
S. Chadwick, C. Kriegel, M. Amiji, Nanotechnology solutions for mucosal immunization, Adv. Drug Deliv. Rev. 62 (2010) 394–407.
DOI: 10.1016/j.addr.2009.11.012
Google Scholar
[6]
Y. Aktas, K. Andrieux, M. Jose, P. Calvo, P. Couvreur, Y. Capan, Preparation and in vitro evaluation of chitosan nanoparticles containing a caspase inhibitor. Int. J. Pharm. 298 (2005) 378–383.
DOI: 10.1016/j.ijpharm.2005.03.027
Google Scholar
[7]
W. Fan, W. Yan, Z. Xu, H. Ni, Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique, Colloids Surfaces B Biointerfaces 90 (2012) 21–27.
DOI: 10.1016/j.colsurfb.2011.09.042
Google Scholar
[8]
O.G. Jones, E.A. Decker, D.J. Mcclements, Comparison of protein–polysaccharide nanoparticle fabrication methods : Impact of biopolymer complexation before or after particle formation, J. Colloid Interface Sci. 344 (2010) 21–29.
DOI: 10.1016/j.jcis.2009.12.017
Google Scholar
[9]
S. Papadimitriou, D. Bikiaris, K. Avgoustakis, E. Karavas, M. Georgarakis, Chitosan nanoparticles loaded with dorzolamide and pramipexole, Carbohydr. Polym. 73 (2008) 44–54.
DOI: 10.1016/j.carbpol.2007.11.007
Google Scholar
[10]
M. Nara, H. Morii, M. Tanokura, Coordination to divalent cations by calcium-binding proteins studied by FTIR spectroscopy, Biochim. Biophys. Acta 1828 (2013) 2319–2327.
DOI: 10.1016/j.bbamem.2012.11.025
Google Scholar
[11]
M. Mizuguchi, M. Nara, K. Kawano, K. Nitta, FT-IR study of the Ca2+-binding to bovine α-lactalbumin: Relationships between the type of coordination and characteristics of the bands due to the Asp COO- groups in the Ca2+ -binding site, FEBS Lett. 417 (1997).
DOI: 10.1016/s0014-5793(97)01274-x
Google Scholar
[12]
M. Nara, H. Morii, F. Yumoto, H. Kagi, M. Tanokura, Fourier transform infrared spectroscopic study on the Ca2+ -bound coordination structures of synthetic peptide analogues of the calcium- binding site III of troponin c. Biopolymers 82 (2006).
DOI: 10.1002/bip.20477
Google Scholar
[13]
J. Grdadolnik, Saturation effects in FTIR spectroscopy : Intensity of Amide I and Amide II bands in protein spectra, Acta Chim. Slov. 50 (2003) 777–788.
Google Scholar