Compressive Strength Evaluation and Phase Analysis of Pulp Capping Materials Based on Carbonate Apatite-SCPC Using Different Concentration of SCPC and Calcium Hydroxide

Article Preview

Abstract:

The mechanical strength of pulp capping material based on carbonate apatite and silica calcium-phosphate composite (CO3Ap-SCPC) is one of the key factors for the success of the material in protecting the vitality of the pulp during the formation of apatite and dentin reparative. Modifying the material in the powder phase was known to increase the mechanical strength. The purpose of this study was to determine whether the addition of SCPC and calcium hydroxide in pulp capping materials based on CO3Ap-SCPC would affect the compressive strength of this pulp capping material. In this study, three cement groups were used, each group consisted of dicalcium phosphate anhydrous and vaterite which added by SCPC concentration 0%, 5% and 10% and calcium hydroxide concentration 0%, 5% and 10%, respectively. All groups were tested by a compressive strength test and X-Ray diffraction (XRD) for phase analysis. The mean value of compressive strength with addition of 0% SCPC and 10% Ca(OH)2 was 16.54 ± 1.35 MPa, addition of 5% SCPC and 5% Ca(OH)2 of 18.55 ± 2.81 MPa, addition of 10% SCPC and 0% Ca(OH)2 was 9.22 ± 1.21 MPa. The addition of SCPC and Ca(OH)2 show statistically significant difference in compressive strength (p<0.05). The XRD analysis of the highest compressive strength revealed that the apatite crystal was successfully formed. It can be concluded that incorporated specific amount of SCPC and Ca(OH)2 could improve the mechanical strength and the apatite formation of the CO3Ap-SCPC pulp capping material.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

15-20

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.F. Cohen and R.C. Burns, Pathways of The Pulp, 8th ed., Mosby Inc., St. Louis, (2002).

Google Scholar

[2] T. Komabayashi, Q. Zhu, E. Robert, I. Yohji, Current Status of Direct Pulp-Capping Materials for Permanent Teeth, Dent. Mater. J. 35(1) (2016) 1-12.

DOI: 10.4012/dmj.2015-013

Google Scholar

[3] M.N. Zakaria, A. Cahyanto, A. El-Ghannam, Basic Properties of Novel Bioactive Cement Based on Silica-Calcium Phosphate Composite and Carbonate Apatite, Key Eng. Mater. 720 (2017) 147-152.

DOI: 10.4028/www.scientific.net/kem.720.147

Google Scholar

[4] M.N. Zakaria, N.F.N. Pauziah, I.P. Sabirin, A. Cahyanto, Evaluation of carbonate apatite cement in inducing formation of reparative dentin in exposed dental pulp, Key Eng. Mater. 758 (2017) 250-254.

DOI: 10.4028/www.scientific.net/kem.758.250

Google Scholar

[5] D.S Pathak, P. V. Bansode, M. B. Wavdhane, S. Khedgikar, P. P. Birage, Advances in Pulp Capping Materials: A Review, IOSR J. Dent. Med. Sci. 16(2) (2017) 31–37.

Google Scholar

[6] M.G. Gandolfi, F. Siboni, T. Botero, M. Bossu, F. Riccitiello, C. Prati, Calcium silicate and calcium hydroxide materials for pulp capping: biointeractivity, porosity, solubility and bioactivity of current formulations, J. Appl. Biomater. Funct. Mater. 13 (2015).

DOI: 10.5301/jabfm.5000201

Google Scholar

[7] A. Qureshi, E. Soujanya, N. Numar , P. Kumar , S. Hivarao, Recent Advances in Pulp Capping Materials: An Overview, J. Clin. Diagn. Res. 8(1) (2014) 316-321.

Google Scholar

[8] T. J. Hilton, Keys to Clinical Success with Pulp Capping: A Review of the Literature, Oper. Dent. 34(5) (2009) 615–625.

DOI: 10.2341/09-132-0

Google Scholar

[9] L.C. Natale, M.C. Rodrigues, T.A. Xavier, A. Simoes, D.N. de Souza, R.R. Braga, Ion Release and Mechanical Properties of Calcium Silicate and Calcium Hydroxide Materials Used for Pulp Capping, Int. Endo. J. (2014) 1-6.

DOI: 10.1111/iej.12281

Google Scholar

[10] S.V. Dorozhkin, Calcium Orthophosphate Cements and Concretes, Materials. 2(1) (2009) 221-291.

DOI: 10.3390/ma2010221

Google Scholar

[11] A. Cahyanto, K. Tsuru, K. Ishikawa. Transformation of apatite cement to B-type carbonate apatite using different atmosphere, Key Eng. Mater. 696 (2016) 9-13.

DOI: 10.4028/www.scientific.net/kem.696.9

Google Scholar

[12] A. Cahyanto, M. Maruta, K. Tsuru, K. Ishikawa, and S. Matsuya, Basic Properties of Carbonate Apatite Cement Consisting of Vaterite and Dicalcium Phosphate Anhydrous, Key Eng. Mater. 530 (2016) 192-196.

DOI: 10.4028/www.scientific.net/kem.529-530.192

Google Scholar

[13] A. Cahyanto, M. Maruta, K. Tsuru, S. Matsuya, K. Ishikawa, Fabrication of bone cement that fully transforms to carbonate apatite, Dent. Mat. J. 34 3 (2005) 394-401.

DOI: 10.4012/dmj.2014-328

Google Scholar

[14] A. Cahyanto, R. Toita, K. Tsuru, K. Ishikawa, Effect of Particle Size on Carbonate Apatite Cement Properties Consisting of Calcite (or Vaterite) and Dicalcium Phosphate Anhydrous, Key Eng. Mater. 631 (2015) 128-133.

DOI: 10.4028/www.scientific.net/kem.631.128

Google Scholar

[15] A. Cahyanto, E. Megasari, M.N. Zakaria, N. Djustiana, Sunarso, K. Usri, D. Aripin, S. Tjahayawati, M.S. Mariam, S.S. Widyaputra, Fabrication of carbonate apatite cement as endodontic sealer, Key Eng. Mater. 758 (2017) 61-65.

DOI: 10.4028/www.scientific.net/kem.758.61

Google Scholar

[16] A. Cahyanto, A. Rezano, M.N. Zakaria, A. El-Ghannam, Synthesis and Characterization of a Novel SCPC-CO3Ap Cement for Pulp Capping Application in Dentistry, Key Eng. Mater. 758 (2017) 29-33.

DOI: 10.4028/www.scientific.net/kem.758.29

Google Scholar

[17] F. Daitou, M. Maruta, G. Kawachi, K. Tsuru, S. Matsuya, Y. Terada, K. Ishikawa, Fabrication of carbonate apatite block based on internal dissolution-precipitation reaction of dicalcium phosphate and calcium carbonate. Dent. Mater. J. 29(3) (2010).

DOI: 10.4012/dmj.2009-095

Google Scholar

[18] A. Cahyanto, K. Tsuru, K. Ishikawa. Carbonate apatite formation during the setting reaction of apatite cement. Advances in Bioceramics and Porous Ceramics V. Ceramics Engineering and Science Proceeding 33 6 (2013) 7-10.

DOI: 10.1002/9781118217504.ch2

Google Scholar

[19] A. Cahyanto, K. Tsuru, K. Ishikawa and M. Kikuchi. Mechanical strength improvement of apatite cement using hydroxyapatite/collagen nanocomposite, Key Eng. Mater. 720 (2017) 167-172.

DOI: 10.4028/www.scientific.net/kem.720.167

Google Scholar

[20] N. Djustiana, M. Amaranila, N. Greviana, M.N. Zakaria, Sunarso, A. Cahyanto, Hardness evaluation of carbonate apatite cement based on various ratio of precursor, Key Eng. Mater. 758 (2017) 52-55.

DOI: 10.4028/www.scientific.net/kem.758.52

Google Scholar

[21] A. Cahyanto, A.G. Imaniyyah, M.N. Zakaria, Z. Hasratiningsih, Mechanical Strength Properties of Injectable Carbonate Apatite Cement with Various Concentration of Sodium Carboxymethyl Cellulose, Key Eng. Mater. 758 (2017) 56-60.

DOI: 10.4028/www.scientific.net/kem.758.56

Google Scholar

[22] H. Maeda, V. Maquet, Q.Z. Chen, T. Kasuga, H. Jawad, A.R. Boccaccini, Bioactive Coatings by Vaterite Deposition on Polymer Substrates of Different Composition and Morphology, Mater. Sci. Eng. C 27 (2017) 741-745.

DOI: 10.1016/j.msec.2006.07.021

Google Scholar

[23] A. El-Ghannam, Advanced bioceramic composite for bone tissue engineering: design principles and structure bioactivity relationship, J. Biomed. Mater. Res. A 69 3 (2004) 490-501.

DOI: 10.1002/jbm.a.30022

Google Scholar

[24] G. Gupta, S. Kirakodu, D. White, A. El-Ghannam, Dissolution kinetics of a Si-rich nanocomposite and its effect on osteoblast gene expression, J. Biomed. Mater. Res. Part A 80A (2006) 486-496.

DOI: 10.1002/jbm.a.31005

Google Scholar