[1]
E. M. Epshtein, G. M. Smelev and G. I. Tsurkan. Photostimulated Progresses in Semiconductors. Izd. Shtiinza, Kishinev 1987 (in Russian).
Google Scholar
[2]
N. Q. Bau, B. D. Hoi, Investigation of the Hall Effect in Rectangular Quantum Wells with a Perpendicular Magnetic Field in the Presence of a High – frequency Electromagnetic Wave, Int. J. Mod. Phys. B, 28 (2014) 145001, 1-14.
DOI: 10.1142/s0217979214500015
Google Scholar
[3]
N. Q. Bau, D. T. Long, Influence of confined optical phonons and laser radiation on the Hall effect in a compositional superlattice, Phys. B 512 (2018) 149-154.
DOI: 10.1016/j.physb.2017.09.127
Google Scholar
[4]
Y. Shimura, M. Tsujimoto, A. Sakai, B. Zeng, L. Balicas, S. Nakatsuji, Shubnikov-de Haas Oscillation in the cubic Γ3-based heavy fermion superconductor PrV2Al20, J. Phys.: Conf. Seri. 592 (2015) 012026-1-012026-4.
DOI: 10.1088/1742-6596/592/1/012026
Google Scholar
[5]
F. X. Xiang, M. Veldhorst, S. X. Dou and X. L. Wang, Multiple Fermi pockets revealed by Shubnikov-de Haas oscillations in WTe2, Europhys. Lett.: Lett. J. Expl. Front. Phys. 112(3) (2015) 37009-1-37009-5.
DOI: 10.1209/0295-5075/112/37009
Google Scholar
[6]
N. Matsumoto, M. Mineharu, M. Matsunaga et al., Shubnikov–de Haas measurements on a high mobility monolayer graphene flake sandwiched between boron nitride sheets, J. Phys.: Cond. Matt. 29(22) (2017) 225301.
DOI: 10.1088/1361-648x/aa6d36
Google Scholar
[7]
R. F. Pires, P. Pureur, M. Behar, J. L. Pimentel Jr., J. Schaf, Magnetism, magnetoresistance, and Shubnikov-de Haas oscillations in Na-implanted highly oriented pyrolitic graphite, J. Appl. Phys. 111 (2012) 093922-093927.
DOI: 10.1063/1.4709731
Google Scholar
[8]
O. Pavlosiuk, D. Kaczorowski, P. Wiśniewski, Shubnikovde Haas oscillations, weak antilocalization effect and large linear magnetoresistance in the putative topological superconductor LuPdBi, Scientific Rep. 5, 9158 (2015) 9518-1-9518-9.
DOI: 10.1038/srep09158
Google Scholar
[9]
F. B. Mancoff, L. J. Zielinski, and C. M. Marcus, Shubnikov–de Haas oscillations in a two-dimensional electron gas in a spatially random magnetic field, Phys. Rev. B, 53(12) (1996) 7599-7602.
DOI: 10.1103/physrevb.53.r7599
Google Scholar
[10]
R. R. Gerhardts, Magnetoresistance oscillations of two-dimensional electron systems in lateral superlattices with structured unit cells Physica E: Low-dimensional Systems and Nanostructures (2015), p.160–167.
DOI: 10.1016/j.physe.2015.06.027
Google Scholar
[11]
V. M. Gvozdikov, Magnetoresistance oscillations in a periodically modulated two-dimensional electron gas: The magnetic-breakdown approach, Phys. Rev. B 75 (2007) 115106.
DOI: 10.1103/physrevb.75.115106
Google Scholar
[12]
N. Q. Bau, N. V. Hieu and N. V. Nhan, The quantum acoustomagnetoelectric field in a quantum well with a parabolic potential, Superlatt. Microstruct. 52 (2012) 921-930.
DOI: 10.1016/j.spmi.2012.07.023
Google Scholar
[13]
S. Izawa, S. Katsumoto, A. Endo, and Y. Iye, Magnetoresistance Oscillation in Two-Dimensional Electron Gas under Spatially Modulated Vector Potential, Phys. Soc. Japan, (1995).
DOI: 10.1143/jpsj.64.706
Google Scholar
[14]
E. H. Hwang and S. Das Sarma, Hall coefficient and magnetoresistance of two-dimensional spin-polarized electron systems, Phys. Rev. B, 73 (2006) 121309(R).
DOI: 10.1103/physrevb.73.121309
Google Scholar