Theoretical Investigation of the Shubnikov-de Haas Magnetoresistance Oscillations in a Quantum well under the Influence of Confined Acoustic Phonons

Article Preview

Abstract:

The Shubnikov – de Haas magnetoresistance oscillations in the Quantum well (QW) under the influence of confined acoustic phonons, The theoretical results show that the conductivity tensor, the complex magnetic impedance of the magnetic field, the frequency, the amplitude of the laser radiation, the QW width, the temperature of the system and especially the quantum index m characterizes the confinement of the phonon. The amplitude of the oscillations of the Shubnikov-de Haas impedance decreases with the increase of the influence of the confined acoustic phonons. The results for bulk phonons in a QW could be achieved, when m goes to zero. We has been compared with other studies when perform the numerical calculations are also achieved for the GaAs/AlGaAs in the QW. Results show that The Shubnikov-de Haas magnetoresistance oscillations amplitude decrease when phonon confinement effect increasing and when width L of the QW increases to a certain value, The Shubnikov – de Haas magnetoresistance oscillations amplitude completely disappears can not be observed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-11

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. M. Epshtein, G. M. Smelev and G. I. Tsurkan. Photostimulated Progresses in Semiconductors. Izd. Shtiinza, Kishinev 1987 (in Russian).

Google Scholar

[2] N. Q. Bau, B. D. Hoi, Investigation of the Hall Effect in Rectangular Quantum Wells with a Perpendicular Magnetic Field in the Presence of a High – frequency Electromagnetic Wave, Int. J. Mod. Phys. B, 28 (2014) 145001, 1-14.

DOI: 10.1142/s0217979214500015

Google Scholar

[3] N. Q. Bau, D. T. Long, Influence of confined optical phonons and laser radiation on the Hall effect in a compositional superlattice, Phys. B 512 (2018) 149-154.

DOI: 10.1016/j.physb.2017.09.127

Google Scholar

[4] Y. Shimura, M. Tsujimoto, A. Sakai, B. Zeng, L. Balicas, S. Nakatsuji, Shubnikov-de Haas Oscillation in the cubic Γ3-based heavy fermion superconductor PrV2Al20, J. Phys.: Conf. Seri. 592 (2015) 012026-1-012026-4.

DOI: 10.1088/1742-6596/592/1/012026

Google Scholar

[5] F. X. Xiang, M. Veldhorst, S. X. Dou and X. L. Wang, Multiple Fermi pockets revealed by Shubnikov-de Haas oscillations in WTe2, Europhys. Lett.: Lett. J. Expl. Front. Phys. 112(3) (2015) 37009-1-37009-5.

DOI: 10.1209/0295-5075/112/37009

Google Scholar

[6] N. Matsumoto, M. Mineharu, M. Matsunaga et al., Shubnikov–de Haas measurements on a high mobility monolayer graphene flake sandwiched between boron nitride sheets, J. Phys.: Cond. Matt. 29(22) (2017) 225301.

DOI: 10.1088/1361-648x/aa6d36

Google Scholar

[7] R. F. Pires, P. Pureur, M. Behar, J. L. Pimentel Jr., J. Schaf, Magnetism, magnetoresistance, and Shubnikov-de Haas oscillations in Na-implanted highly oriented pyrolitic graphite, J. Appl. Phys. 111 (2012) 093922-093927.

DOI: 10.1063/1.4709731

Google Scholar

[8] O. Pavlosiuk, D. Kaczorowski, P. Wiśniewski, Shubnikovde Haas oscillations, weak antilocalization effect and large linear magnetoresistance in the putative topological superconductor LuPdBi, Scientific Rep. 5, 9158 (2015) 9518-1-9518-9.

DOI: 10.1038/srep09158

Google Scholar

[9] F. B. Mancoff, L. J. Zielinski, and C. M. Marcus, Shubnikov–de Haas oscillations in a two-dimensional electron gas in a spatially random magnetic field, Phys. Rev. B, 53(12) (1996) 7599-7602.

DOI: 10.1103/physrevb.53.r7599

Google Scholar

[10] R. R. Gerhardts, Magnetoresistance oscillations of two-dimensional electron systems in lateral superlattices with structured unit cells Physica E: Low-dimensional Systems and Nanostructures (2015), p.160–167.

DOI: 10.1016/j.physe.2015.06.027

Google Scholar

[11] V. M. Gvozdikov, Magnetoresistance oscillations in a periodically modulated two-dimensional electron gas: The magnetic-breakdown approach, Phys. Rev. B 75 (2007) 115106.

DOI: 10.1103/physrevb.75.115106

Google Scholar

[12] N. Q. Bau, N. V. Hieu and N. V. Nhan, The quantum acoustomagnetoelectric field in a quantum well with a parabolic potential, Superlatt. Microstruct. 52 (2012) 921-930.

DOI: 10.1016/j.spmi.2012.07.023

Google Scholar

[13] S. Izawa, S. Katsumoto, A. Endo, and Y. Iye, Magnetoresistance Oscillation in Two-Dimensional Electron Gas under Spatially Modulated Vector Potential, Phys. Soc. Japan, (1995).

DOI: 10.1143/jpsj.64.706

Google Scholar

[14] E. H. Hwang and S. Das Sarma, Hall coefficient and magnetoresistance of two-dimensional spin-polarized electron systems, Phys. Rev. B, 73 (2006) 121309(R).

DOI: 10.1103/physrevb.73.121309

Google Scholar