Preparation, Mechanical and Thermal Properties of PLA/PBAT/EGMA Blends

Article Preview

Abstract:

Poly(lactic acid) (PLA)/Poly(butylene-adipate-co-terephthalate) (PBAT) blends were prepared through corotating tri-screw extruder. Ethylene-methyl acrylate-glycidyl methacrylate terpolymer (EGMA) was used as a reacting compatibilizer to increase the interface bonding force. The effect of EMGA on the mechanical properties, thermal properties and chemical structure of PLA/PBAT blends were researched respectively through multi-use mechanical testing machine, differential scanning calorimeter and Fourier transform infrared spectroscopy. The results indicate that the compatibility between PLA and PBAT could be enhanced by incorporating EGMA, and all of the blends with EGMA showed increase in impact strength and elongation at break. PLA/PBAT blends showed optimum elongation at break with 6% of EGMA. DSC study also indicated the greatest crystallinity when adding 6% of EGMA. Excessive addition of EGMA instead reduced the crystallinity and elongation at break.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

18-22

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Al-Itry, K. Lamnawar, A. Maazouz, Rheological, morphological, and interfacial properties of compatibilized PLA/PBAT blends, Rheolog. Acta. 53 (2014) 501-517.

DOI: 10.1007/s00397-014-0774-2

Google Scholar

[2] P. Ma, X. Cai, Y. Zhang, S. Wang, W. Dong, M. Chen, P. J. Lemstra, In-situ compatibilization of poly(lactic acid) and poly(butylene adipate-co-terephthalate) blends by using dicumyl peroxide as a free-radical initiator, Polym. Degradat. Stabil. 102 (2014).

DOI: 10.1016/j.polymdegradstab.2014.01.025

Google Scholar

[3] L. Cardoso Arruda, M. Magaton, R. E. S. Bretas, M. M. Ueki, Influence of chain extender on mechanical, thermal and morphological properties of blown films of PLA/PBAT blends, Polym. Test. 43 (2015) 27-37.

DOI: 10.1016/j.polymertesting.2015.02.005

Google Scholar

[4] K. Hashima, S. Nishitsuji, T. Inoue, Structure-properties of super-tough PLA alloy with excellent heat resistance, Polymer. 51 (2010) 3934-3939.

DOI: 10.1016/j.polymer.2010.06.045

Google Scholar

[5] N. J. Wu, H. Zhang, Mechanical properties and phase morphology of super-tough PLA/PBAT/EMA-GMA multicomponent blends, Mater. Lett. 192 (2017) 17-20.

DOI: 10.1016/j.matlet.2017.01.063

Google Scholar

[6] M. Kumar, S. Mohanty, S. Nayak. Effect of glycidyl methacrylate (GMA) on the thermal, mechanical and morphological property of biodegradable PLA/PBAT blend and its nanocomposites, Bioresour. Tech. 101 (2010) 8406-8415.

DOI: 10.1016/j.biortech.2010.05.075

Google Scholar

[7] J. D. Jiang, L. L. Su, K. Zhang, G. Z. Wu, Rubber-toughened PLA blends with low thermal expansion, J. Appl. Polym. Sci. 128 (2013) 3993-4000.

DOI: 10.1002/app.38642

Google Scholar

[8] Y. H. Zhou, L. Lei, B. Yang, J. B. Li, J. Ren, Preparation of PLA-based nanocomposites modified by nanoattapulgite with good toughness-strength balance, Polym. Test. 60 (2017) 78-83.

DOI: 10.1016/j.polymertesting.2017.03.007

Google Scholar

[9] P. Zhao, W. Q. Liu, Q. S., and J. Ren, Preparation,Mechanical, and Thermal Properties of Biodegradable Polyesters/Poly(Lactic Acid) Blends, J. Nanomater. 2009 (2010) 1-8.

DOI: 10.1155/2010/287082

Google Scholar

[10] A. M. Zolali, B. D. Favis. Compatibilization and toughening of co-continuous ternary blends via partially wet droplets at the interface, Polymer. 114 (2017) 277-288.

DOI: 10.1016/j.polymer.2017.02.093

Google Scholar

[11] J. Punmanee, R. Chaiwat, C. Pranee. Effect of glycidyl methacrylate-grafted natural rubber on physical properties of polylactic acid and natural rubber blends, J. Appl. Polym. Sci. 125 (2012) 745-754.

DOI: 10.1002/app.36263

Google Scholar