Magnetocaloric Effect of Ni44Co6Mn40CuxSn10-x Quinary Alloy Comes from the Martensitic Transformation

Article Preview

Abstract:

The structure, martensitic transition and magnetic properties of Ni44Co6Mn40CuxSn10-x quinary alloy are investigated systematically. The substitution of Cu for Sn is found to reduce the symmetry of crystal structure, showing an evolution from cubic to tetragonal phase at room temperature. Two magnetic transitions were observed in the alloys, martensitic transition and Curie transition. The critical temperatures of martensitic transformation are found to increase nearly linearly with increasing valence electron concentration caused by Cu substitution for Sn, while Curie temperature of the austenitic phase decreases with the increasing Cu content in the alloys. The Ni44Co6Mn40CuxSn10-x alloys have a large magnetic entropy change across the martensitic transition, reaching 26.8 Jkg-1K-1 under a field change of 3T, because of the strong coupling between structure and magnetism, which shows a great applicable prosperity in magnetic refrigeration technology.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

17-24

Citation:

Online since:

November 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Guillou, G. Porcari, H. Yibole, N. van Dijk, E. Brück, Taming the First-Order Transition in Giant Magnetocaloric Materials, Advanced Materials 26 (2014) 2671-2675.

DOI: 10.1002/adma.201304788

Google Scholar

[2] J. Blázquez, J. Ipus, L. Moreno-Ramírez, J. Álvarez-Gómez, D. Sánchez-Jiménez, S. Lozano-Pérez, V. Franco, A. Conde, Ball milling as a way to produce magnetic and magnetocaloric materials: a review, Journal of Materials Science 52 (2017).

DOI: 10.1007/s10853-017-1089-3

Google Scholar

[3] B. Shen, J. Sun, F. Hu, H. Zhang, Z. Cheng, Recent progress in exploring magnetocaloric materials, Advanced Materials 21 (2009) 4545-4564.

DOI: 10.1002/adma.200901072

Google Scholar

[4] P. Nordblad, Magnetocaloric materials: Strained relations, Nature materials 12 (2013) 11-12.

Google Scholar

[5] A.T. Saito, T. Kobayashi, S. Kaji, J. Li, H. Nakagome, Environmentally friendly magnetic refrigeration technology using ferromagnetic Gd alloys, International Journal of Environmental Science and Development 7 (2016) 316.

DOI: 10.7763/ijesd.2016.v7.791

Google Scholar

[6] C. Aprea, A. Greco, A. Maiorino, Magnetic refrigeration: a promising new technology for energy saving, International Journal of Ambient Energy 37 (2016) 294-313.

DOI: 10.1080/01430750.2014.962088

Google Scholar

[7] A. Aryal, A. Quetz, S. Pandey, I. Dubenko, S. Stadler, N. Ali, Magnetocaloric effects and transport properties of rare-earth (R=La, Pr, Sm) doped Ni50-xRxMn35Sn15 Heusler alloys, Journal of Alloys & Compounds 717 (2017) 254-259.

DOI: 10.1016/j.jallcom.2017.05.096

Google Scholar

[8] Y. Yi, L. Li, K. Su, Y. Qi, D. Huo, Large magnetocaloric effect in a wide temperature range induced by two successive magnetic phase transitions in Ho2Cu2Cd compound, Intermetallics 80 (2017) 22-25.

DOI: 10.1016/j.intermet.2016.10.005

Google Scholar

[9] Q.L. Ji, Z.G. Zou, F. Long, Y. Wu, Magnetocaloric Properties of Perovskite-Type Manganite La0.65Sr0.2Na0.15MnO3, Key Engineering Materials 697 (2016) 93-96.

Google Scholar

[10] M. Balli, B. Roberge, P. Fournier, S. Jandl, Review of the Magnetocaloric Effect in RMnO3 and RMn2O5 Multiferroic Crystals, Crystals 7 (2017) 44.

DOI: 10.3390/cryst7020044

Google Scholar

[11] S. Kumar, I. Coondoo, M. Vasundhara, A.K. Patra, A.L. Kholkin, N. Panwar, Magnetization reversal behavior and magnetocaloric effect in SmCr0.85Mn0.15O3 chromites, Journal of Applied Physics 121 (2017) 043907.

DOI: 10.1063/1.4974737

Google Scholar

[12] A. Selmi, R. M'Nassri, W. Cheikhrouhou-Koubaa, N.C. Boudjada, A. Cheikhrouhou, Effects of partial Mn-substitution on magnetic and magnetocaloric properties in Pr0.7Ca0.3Mn0.95X0.05O3 (Cr, Ni, Co and Fe) manganites, Journal of Alloys & Compounds 619 (2015).

DOI: 10.1016/j.jallcom.2014.09.078

Google Scholar

[13] K. Liu, S.C. Ma, L. Zhang, Y.L. Huang, Y.H. Hou, G.Q. Zhang, W.B. Fan, Y.L. Wang, Y. Wang, J. Cao, Tuning the magnetic transition and magnetocaloric effect in Mn1-xCrxCoGe alloy ribbons, Journal of Alloys & Compounds 690 (2017) 663-668.

DOI: 10.1016/j.jallcom.2016.08.126

Google Scholar

[14] J.Q. Zhao, H.X. Zhu, C.L. Zhang, Y.G. Nie, H.F. Shi, E.J. Ye, Z.D. Han, D.H. Wang, Magnetostructural transition and magnetocaloric effect in a MnCoSi-based material system, Journal of Alloys & Compounds 735 (2018) 959-963.

DOI: 10.1016/j.jallcom.2017.11.204

Google Scholar

[15] F. Hu, B. Shen, J. Sun, Magnetic entropy change in NiMnGa alloy, Applied Physics Letters 76 (2000) 3460.

Google Scholar

[16] S. Stadler, M. Khan, J. Mitchell, N. Ali, A.M. Gomes, I. Dubenko, A.Y. Takeuchi, A.P. Guimarães, Magnetocaloric properties of Ni2Mn1-xCuxGa, Applied Physics Letters 88 (2006) 192511.

DOI: 10.1063/1.2202751

Google Scholar

[17] M. Pasquale, C. Sasso, L. Lewis, L. Giudici, T. Lograsso, D. Schlagel, Magnetostructural transition and magnetocaloric effect in Ni55Mn20Ga25 single crystals, Physical Review B 72 (2005) 094435.

DOI: 10.1103/physrevb.72.094435

Google Scholar

[18] W. Ito, Y. Imano, R. Kainuma, Y. Sutou, K. Oikawa, K. Ishida, Martensitic and Magnetic Transformation Behaviors in Heusler-Type NiMnIn and NiCoMnIn Metamagnetic Shape Memory Alloys, Metallurgical & Materials Transactions A 38 (2007) 759-766.

DOI: 10.1007/s11661-007-9094-9

Google Scholar

[19] T. Krenke, M. Acet, E.F. Wassermann, X. Moya, L. Mañosa, A. Planes, Martensitic transitions and the nature of ferromagnetism in the austenitic and martensitic states of Ni-Mn-Sn alloys, Physical Review B 72 (2005) 014412.

DOI: 10.1103/physrevb.72.014412

Google Scholar

[20] T. Krenke, M. Acet, E.F. Wassermann, X. Moya, L. Mañosa, A. Planes, Ferromagnetism in the austenitic and martensitic states of Ni-Mn-In alloys, Physical Review B 73 (2006) 174413.

DOI: 10.1103/physrevb.73.174413

Google Scholar

[21] F. Chen, Y. Tong, L. Li, J.S. Llamazares, C. Sánchez-Valdés, P. Müllner, The effect of step-like martensitic transformation on the magnetic entropy change of Ni40.6Co8.5Mn40.9Sn10 unidirectional crystal grown with the Bridgman- Stockbarger technique, Journal of Alloys and Compounds 691 (2017).

DOI: 10.1016/j.jallcom.2016.08.240

Google Scholar

[22] F. X. Hu, B. G. Shen, J. R. Sun, Magnetic entropy change involving martensitic transition in NiMn-based Heusler alloys, Chinese Physics B 22 (2013) 037505.

DOI: 10.1088/1674-1056/22/3/037505

Google Scholar

[23] A. Ghosh, K. Mandal, Large magnetic entropy change and magnetoresistance associated with a martensitic transition of Mn-rich Mn50.5-xNi41Sn8.5+x alloys, Journal of Physics D: Applied Physics 46 (2013) 435001.

DOI: 10.1088/0022-3727/46/43/435001

Google Scholar

[24] E. Brück, Developments in magnetocaloric refrigeration, Journal of Physics D: Applied Physics 38 (2005) R381.

Google Scholar

[25] Y. Zhang, J. Liu, Q. Zheng, J. Zhang, W. Xia, J. Du, A. Yan, Large magnetic entropy change and enhanced mechanical properties of Ni-Mn-Sn-C alloys, Scripta Materialia 75 (2014) 26-29.

DOI: 10.1016/j.scriptamat.2013.11.009

Google Scholar

[26] I. Dincer, E. Yüzüak, Y. Elerman, Influence of irreversibility on inverse magnetocaloric and magnetoresistance properties of the (Ni,Cu)50Mn36Sn14 alloys, Journal of Alloys and Compounds 506 (2010) 508-512.

DOI: 10.1016/j.jallcom.2010.07.066

Google Scholar

[27] I. Dincer, E. Yüzüak, Y. Elerman, The effect of the substitution of Cu for Ni on magnetoresistance and magnetocaloric properties of Ni50Mn34In16, Journal of Alloys and Compounds 509 (2011) 794-799.

DOI: 10.1016/j.jallcom.2010.09.092

Google Scholar