First Principles Study on Magnetic and Optical Properties of Single Layer CrSi2

Article Preview

Abstract:

According to first-principle based on the density functional theory, the magnetic and optical properties of single layer CrSi2 are calculated and analyzed by plane wave pseudo potential method. The band structure, density of state, optical absorption spectra, reflectivity and energy loss function of single layer CrSi2 are obtained. The results show that single layer CrSi2 has the properties of metal and magnetism. The calculations of optical properties of single layer CrSi2 material deduce that it can absorb photons which belong to visible to ultraviolet region, even in far-infrared and far-ultraviolet regions. Single layer CrSi2 has a good optical permeability to photon (with energy from 13 to 40eV), which shows that single layer CrSi2 is suitable for optoelectronic devices, especially in infrared and vacuum ultraviolet detection applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

53-59

Citation:

Online since:

November 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Lei Tianmin, Wu Shengbao, Zhang Yuming, Liu Jiajia, Guo Hui, Zhang Zhiyong, Electronic structure and optical properties of monolayer MoS2, Rare Metal Materials and Engineering,42(2013) 2477-2480.

Google Scholar

[2] L. I Ivanenko, V. L Shaposhnikov, A. B Filonov, A.VKrivosheeva, .E Borisenko, D. BMigas, LMiglio, GBehr, J Schumann, Electronic properties of semiconducting silicides: fundamentals and recent predictions, Thin Solid Films ,461(2004)141-147.

DOI: 10.1016/j.tsf.2004.02.088

Google Scholar

[3] N. G. Galkin, T. V. Velitchko, S. V. Skripka, A. B. Khrustalev, Semiconducting and structural properties of CrSi2 A-type epitaxial films on Si(111). Thin solid films, 280(1996)211-220.

DOI: 10.1016/0040-6090(95)08241-7

Google Scholar

[4] Shiyun Zhou, Quan Xie, Wanjun Yan, Qian Chen,The first principle of the electronic structure and optical properties of CrSi2, China calculation (series G: Physics, mechanics science and Astronomy), 39 (2009)175-180.

DOI: 10.1007/s11433-009-0016-2

Google Scholar

[5] Yan Wanjun, Zhang Chunhon, et al, The optical-electrical properties of doped β-FeSi2, Journal of Semiconductors, 34(2013)103003-1-103003-7.

Google Scholar

[6] Yooleemi Shin et al, New synthesis of MnSi2 thin film and its thermoelectric properties, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 33(2015), 061516-1-061516-5.

DOI: 10.1116/1.4932515

Google Scholar

[7] Shinoda, S. Asanabe, and Y. Sasaki, Semiconducting Properties of Chromium Disilicide, J. Phys. Soc. Jpn. 19 (1964)269-272.

DOI: 10.1143/jpsj.19.269

Google Scholar

[8] T. Siegrist, F. Hulliger and G. Travaglini, The crystal structure and some properties of ReSi2, Journal of the Less-Common Metals, 92 (1983) 119-129.

DOI: 10.1016/0022-5088(83)90233-3

Google Scholar

[9] Bellan V. Guizzetti G. Marabell F,Theory and experiment on the optical properties of CrSi2,Phys Rev B, 461992)9380-9389.

Google Scholar

[10] Krijn, M. P. C. M., Eppenga, R., First princiles electronic structure and optical properties of CrSi2, Phys Rev B, 44(1991)9042–9044.

Google Scholar

[11] Bost M C, Mahan J E. An investigation of the optical constants and band gap of chromium disilicide, Journal of Applied Physics, 63(1988)839-844.

DOI: 10.1063/1.340078

Google Scholar

[12] Zhao Jun, Zheng Hui. Two-dimensional germanane and germanane ribbons: density functional calculation of structural, electronic, optical and transport properties and the role of defects. RSC Adv., 6(2016), 28298- 28307.

DOI: 10.1039/c5ra23323b

Google Scholar

[13] Wang, X. Q., Li, H. D., Wang, J. T., Induced ferromagnetism in one-side semihydrogenated silicene and germanene, Phys. Chem. Chem. Phys.14(2012),3031-3036.

DOI: 10.1039/c2cp23385a

Google Scholar

[14] Zheng, F., Zhang, C., The electronic and magnetic properties of functionalized silicene: a first-principles study, Nanoscale Res. Lett. 7(2012)422.

DOI: 10.1186/1556-276x-7-422

Google Scholar

[15] Zhang H, Liu L M, Lau W M. Dimension-dependent phase transition and magnetic properties of VS2. J Mater Chem A. ,1(2013)10821-10828.

DOI: 10.1039/c3ta12098h

Google Scholar

[16] Nannan Han, Hongsheng Liu, Jijun Zhao, Novel Magnetic Monolayers of Transition Metal Silicide, 28(2015)1755-1758.

Google Scholar

[17] P. Hohenberg, W. Kohn, Inhomogeneous electron gas, Phys. Rev. B.136(1964)864-871.

Google Scholar

[18] W. Kohn, L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. A 140(1965)A1133- A1138.

DOI: 10.1103/physrev.140.a1133

Google Scholar

[19] J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996)3865–3868.

DOI: 10.1103/physrevlett.77.3865

Google Scholar

[20] M. C. Payne et al., Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients, Rev. Mod. Phys. 64(1992)1064-1096.

DOI: 10.1103/revmodphys.64.1045

Google Scholar

[21] S.J. Clark et al., First principles methods using {CASTEP}, Z. Kristall. 220(2005)567-570.

Google Scholar

[22] G. Kresse, D. Joubert, Self-interaction correction to density-functional approximations for many-electron systems, Phys. Rev. B: Condens. Matter Mater. Phys. 59(1999)1758-1775.

Google Scholar