Temperature Dependence of Commensurate Magnetic Resonance in Cuprate Superconductors

Article Preview

Abstract:

Within the kinetic energy driven superconducting mechanism, we have studied the temperature dependence of commensurate magnetic resonance in cuprate superconductors. It is shown that the commensurate magnetic resonance peak at the antiferromagnetic wave vector point persists in the superconducting state until the temperature rises to the superconducting transition temperature $T_{\rm c}$. The intensity of the resonance peak decreases with increasing temperature which is just like the temperature dependence of the superconducting gap parameter. Our results are in qualitative agreement with the inelastic neutron scattering experimental data and reflect that the commensurate magnetic resonance is closely related to the creation of the charge carrier pairs and thus the superconducting mechanism of cuprate superconductors.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

31-36

Citation:

Online since:

November 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. G. Bednorz and K. A. Müller, Possible High Tc Superconductivity in the Ba-La-Cu-O System, Z. Phys. B: Condens. Matter 64 (1986) 189-193.

Google Scholar

[2] See, e.g., the review, M. A. Kastner, R. J. Birgeneau, G. Shirane, Y. Endoh, Magnetic, transport, and optical properties of monolayer copper oxides, Rev. Mod. Phys. 70 (1998) 897-928.

DOI: 10.1103/revmodphys.70.897

Google Scholar

[3] See, e.g., the review, M. Fujita, H. Hiraka, M. Matsuda, M. Matsuura, J. M. Tranquada, S. Wakimoto, G. Xu, K. Yamada, Progress in Neutron Scattering Studies of Spin Excitations in High-Tc Cuprates, J. Phys. Soc. Jpn. 81 (2012) 011007.

DOI: 10.1143/jpsj.81.011007

Google Scholar

[4] See, e.g., the review, M. Eschrig, The effect of collective spin-1 excitations on electronic spectra in high-Tc superconductors, Adv. Phys. 55 (2006) 47.

Google Scholar

[5] S. Wakimoto, K. Yamada, J. M. Tranquada, C. D. Frost, R. J. Birgeneau, H. Zhang, Disappearance of Antiferromagnetic Spin Excitations in Overdoped La2−xSrxCuO4, Phys. Rev. Lett. 98 (2007) 247003.

DOI: 10.1016/j.physc.2007.03.306

Google Scholar

[6] Ph. Bourges, B. Keimer, S. Pailhès, L. P. Regnault, Y. Sidis, C. Ulrich, The resonant magnetic mode: A common feature of high-Tc superconductors, Physica C 424 (2005) 45-49.

DOI: 10.1016/j.physc.2003.11.086

Google Scholar

[7] H. A. Mook, M. Yethiraj, G. Aeppli, T. E. Mason, T. Armstrong, Polarized neutron determination of the magnetic excitations in YBa2Cu3O7, Phys. Rev. Lett. 70 (1993) 3490-3493.

Google Scholar

[8] P. Dai, H. A. Mook, S. M. Hayden, G. Aeppli, T. G. Perring, R. D. Hunt, F. Doǧan, The Magnetic Excitation Spectrum and Thermodynamics of High-Tc Superconductors, Science 284 (1999) 1344-1347.

DOI: 10.1126/science.284.5418.1344

Google Scholar

[9] H. F. Fong, P. Bourges, Y. Sidis, L. P. Regnault, A. Ivanov, G. D. Guk, N. Koshizuka, B. Keimer, Neutron scattering from magnetic excitations in Bi2Sr2CaCu2O8+δ, Nature 398 (1999) 588-591.

DOI: 10.1038/19255

Google Scholar

[10] F. Yuan, S. Feng, Z.-B. Su, L. Yu, Doping and temperature dependence of incommensurate antiferromagnetism in underdoped lanthanum cuprates, Phys. Rev. B 64 (2001).

DOI: 10.1103/physrevb.64.224505

Google Scholar

[11] S. Feng, J. Qin, T. Ma, A gauge invariant dressed holon and spinon description of the normal state of underdoped cuprates, J. Phys.: Condens. Matter 16 (2004) 343-359.

DOI: 10.1088/0953-8984/16/3/014

Google Scholar

[12] S. Feng, Kinetic energy driven superconductivity in doped cuprates, Phys. Rev. B 68 (2003) 184501; S. Feng, T. Ma, H. Guo, Magnetic nature of superconductivity in doped cuprates, Physica C 436 (2006) 14-24.

DOI: 10.1016/j.physc.2006.01.001

Google Scholar

[13] See, e.g., the review, S. Feng, Y. Lan, H. Zhao, L. Kuang, L. Qin, X. Ma, Kinetic-energy-driven superconductivity in cuprate superconductors, Int. J. Mod. Phys. B 29 (2015) 1530009.

DOI: 10.1142/s0217979215300091

Google Scholar

[14] L. Kuang, Y. Lan, S. Feng, Dynamical spin response in cuprate superconductors from low-energy to high-energy, J. Magn. Magn. Mater. 374 (2015) 624-633.

DOI: 10.1016/j.jmmm.2014.09.018

Google Scholar

[15] P. W. Anderson, The Resonating Valence Bond State in La2CuO4 and Superconductivity, Science 235 (1987) 1196-1198.

Google Scholar

[16] S. Feng, Z. B. Su, L. Yu, Fermion-spin transformation to implement the charge-spin separation, Phys. Rev. B 49 (1994) 2368-2384.

DOI: 10.1103/physrevb.49.2368

Google Scholar

[17] V. M. Svistunov, V. Yu. Tarenkov, A. I. D'yachenko, E. Hatta, Temperature Dependence of the Energy Gap in Bi2223 Metal Oxide Superconductor, JETP Lett. 71 (2000) 289-292.

DOI: 10.1134/1.568336

Google Scholar

[18] S. D. Wilson, P. Dai, S. Li, S. Chi, H. J. Kang, J. W. Lynn, Resonance in the electron-doped high-transition temperature superconductor Pr0.88LaCe0.12CuO4−δ, Nature 442 (2006) 59-62.

DOI: 10.1038/nature04857

Google Scholar

[19] A. M. Panich, S. D.Goren, L. F. Ben-Yakar, M. Eder, G. Gritzner, Thallium and lead NMR studies of (Tl0.5Pb0.5)(Ba0.2Sr0.8)2Ca2Cu3Oy superconductors, Physica C 356 (2001) 129-140.

DOI: 10.1016/s0921-4534(01)00147-2

Google Scholar

[20] P. Monthoux and D. Pines, Spin-fluctuation-induced superconductivity and normal-state properties of YBa2Cu3O7, Phys. Rev. B 49 (1994) 4261-4278.

Google Scholar

[21] T. Moriya, K. Ueda, Spin Fluctuation Spectra and High Temperature Superconductivity, J. Phys. Soc. Jpn. 63 (1994) 1871-1880.

DOI: 10.1143/jpsj.63.1871

Google Scholar