Input Interface for all Spin Logic

Article Preview

Abstract:

We propose an input interface circuit that can provide input signals for the emerging all spin logic (ASL) devices. It consists of metal wires that are used for the transmission of electrical signals and magnetic tunnel junction that are used to transform electrical signals into input signals of ASL devices. The operation of input interface is validated by using a coupled spin-transport/magneto-dynamics model. A salient advantage of the proposed input interface is its ability to shorten the length of spin channel for spin transmission and avoid the complex fan-out structure when multiple identical input signals are needed. This input interface is especially useful for the design of large scale ASL circuits, in which many identical units are needed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

61-67

Citation:

Online since:

November 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Kim, A. Paul, P. A. Crowell, S. J. Koester, S. S. Sapatnekar, J. P. Wang, and C. H. Kim, Spin-based computing: device concepts, current status, and a case study on a high-performance microprocessor, Proc. IEEE, 103 (2015) 106-130.

DOI: 10.1109/jproc.2014.2361767

Google Scholar

[2] W. Kang, Y. Ran, W. F. Lv, Y. G. Zhang, and W. S. Zhao, High-speed low-power magnetic non-volatile flip-flop with voltage-controlled magnetic anisotropy assistance, IEEE Magn. Lett. 7 (2016) 3106205.

DOI: 10.1109/lmag.2016.2604205

Google Scholar

[3] J. S. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey, Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions, Phys. Rev. Lett. 74 (1995) 3273-3276.

DOI: 10.1103/physrevlett.74.3273

Google Scholar

[4] P. Xu, K. Xia, C. Z. Gu, L. Tang, H. F. Yang, and J. J. Li, An all-metallic logic gate based on current-driven domain wall motion, Nature Nanotechnol. 3 (2008) 97-100.

DOI: 10.1038/nnano.2008.1

Google Scholar

[5] B. Behin-Aein, D. Datta, S. Salahuddin, and S. Datta, Proposal for an all-spin logic device with built-in memory, Nature Nanotechnol. 5 (2010) 266-270.

DOI: 10.1038/nnano.2010.31

Google Scholar

[6] S. C. Chang, S. Manipatruni, D. E. Nikonov, I. A. Young, and A. Naeemi, Design and analysis of Si interconnects for all-spin logic, IEEE Trans. Magn. 50 (2014) 3400513.

DOI: 10.1109/tmag.2014.2325536

Google Scholar

[7] M. Sharad, C. Augustinein, G. Panagopoulos, K. Roy, Spin Based Neuron-Synapse Module for Ultra Low Power Programmable Computational Networks. The 2012 International Joint Conference on Neural Networks (IJCNN), Brisbane, Australia. (2012) 1-7.

DOI: 10.1109/ijcnn.2012.6252609

Google Scholar

[8] R. M. Iraei, S. Manipatruni, D. E. Nikonov, I. A. Young, A. Naeemi, Electrical-spin transduction for CMOS-Spintronic interface and long-range interconnects, IEEE J. Explor. Solid-State Comput. Dev. Circ. 3 (2017) 47-55.

DOI: 10.1109/jxcdc.2017.2706671

Google Scholar

[9] J. C. Slonczwski, Current-driven excitation of magnetic multi-layers, J. Magn. Magn. Mater. 159 (1996) L1-L7.

Google Scholar

[10] A. Brataas, G. E. W. Bauer, and P. J. Kelly, Non-collinear magnetoelectronics, Phys. Rep. 427 (2006) 157-255.

DOI: 10.1016/j.physrep.2006.01.001

Google Scholar

[11] S. Manipatruni, D. E. Nikonov, and I. A. Young, Modeling and design of spintronic integrated circuits, IEEE Trans. Circuits Syst. I. 59 (2012) 2801-2814.

DOI: 10.1109/tcsi.2012.2206465

Google Scholar

[12] Y. Zhou, C. L. Zha, S. Bonetti, J. Persson, and J. Åkerman, Microwave generation of tilted-polarizer spin torque oscillator, J. Appl. Phys. 105 (2009) 07D116.

DOI: 10.1063/1.3068429

Google Scholar

[13] W. Brown, Thermal fluctuation of fine ferromagnetic particles, IEEE Trans. Magn. 15 (1979) 1196-1208.

DOI: 10.1109/tmag.1979.1060329

Google Scholar

[14] S. Trudel, O. Gaier, J. Hamrle, and B. Hillebrands, Magnetic anisotropy exchange and damping in cobalt-based full-Heusler compounds: an experimental review, J. Phys. D: Appl. Phys. 43 (2010) 193001.

DOI: 10.1088/0022-3727/43/19/193001

Google Scholar

[15] V. Bonanni, D. Bisero, P. Vavassori, G. Gubbiotti, M. Madami, A. O. Adeyeye, S. Goolaup, N. Singh, T. Ono, and C. Spezzani, Shape and thickness effects on the magnetization reversal of Py/Cu/Co nanostructures, J. Magn. Magn. Mater. 321 (2009).

DOI: 10.1016/j.jmmm.2009.04.080

Google Scholar

[16] U. Gradmann, and H. J. Elmers, Magnetic surface anisotropies in NiFe-alloy films: separation of intrinsic Neel-type from strain relaxation contributions, J. Magn. Magn. Mater. 206 (1999) 107-112.

DOI: 10.1016/s0304-8853(99)00549-1

Google Scholar

[17] S. Wang, L. Cai, H. Q. Cui, C. W. Feng, J. Wang, and K. Qi, Switching characteristics of all spin logic devices based on Co and Permalloy nanomagnet, Acta Phys. Sin. 65 (2016) 098501.

DOI: 10.7498/aps.65.098501

Google Scholar

[18] S. Wang, L. Cai, C. W. Feng, H. Q. Cui, X. K. Yang, and H. Y. Zhao, RS flip-flop implementation based on all spin logic devices, Micro Nano Lett. 12 (2017) 396-400.

DOI: 10.1049/mnl.2016.0589

Google Scholar

[19] V. Calayir, D. E. Nikonov, S. Manipatruni, and I. A. Young, Static and clocked spintronic circuit design and simulation with performance analysis relative to CMOS, IEEE. Trans. Circuits Syst. I. 61 (2014) 393-406.

DOI: 10.1109/tcsi.2013.2268375

Google Scholar

[20] S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, K. Ando, Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions, Nature Mater. 3 (2004) 868-871.

DOI: 10.1038/nmat1257

Google Scholar