Proposal and Demonstration of GaN-Based Normally-Off Vertical Field-Effect Transistor with a Design of Back Current Block Layer

Article Preview

Abstract:

Vertical field-effect transistor (VFET) structure has the advantage in improving both the breakdown voltage (BV) and on-resistance (RON) of semiconductor power devices when compared with the lateral devices. GaN-based normally-off VFET device is designed and demonstrated in this work and an additional back current block layer (B-CBL) is proposed and employed to further improve the device performances. By introducing the B-CBL design, the electric field distribution along the gate aperture is more uniform which leads to an obvious increase (~30%) of BV in the proposed device while the RON is kept nearly constant. Therefore, the figure of merit (FOM) value of the proposed VFET is improved apparently in comparison with that of the conventional GaN-based VFET devices.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

69-73

Citation:

Online since:

November 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] O. Ambacher, J. Smart, J. R. Shealy, et al., Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures, J. Appl. Phys. 87 (2000) 3222-3233.

DOI: 10.1063/1.369664

Google Scholar

[2] M. S. Miao, J. R. Weber, Van de W. C. G., Oxidation and the origin of the two-dimensional electron gas in AlGaN/GaN heterostructures, J. Appl. Phys. 107 (2010) 1022.

DOI: 10.1063/1.3431391

Google Scholar

[3] T. Kachi, Recent progress of GaN power devices for automotive applications, Jpn. J. Appl. Phys. 53 (2014) 100210.

DOI: 10.7567/jjap.53.100210

Google Scholar

[4] T. Oka, T. Nozawa, AlGaN/GaN Recessed MIS-Gate HFET With High-Threshold-Voltage Normally-Off Operation for Power Electronics Applications, IEEE Electron Device Lett. 29 (2008) 668-670.

DOI: 10.1109/led.2008.2000607

Google Scholar

[5] F. Lee, L. Y. Su, C. H. Wang, et al., Impact of Gate Metal on the Performance of p-GaN/AlGaN/GaN High Electron Mobility Transistors, IEEE Electron Device Lett. 36 (2015) 232-234.

DOI: 10.1109/led.2015.2395454

Google Scholar

[6] H. Jiang, C. W. Tang, K. M. Lau., Enhancement-mode GaN MOS-HEMTs with Recess-free Barrier Engineering and High-k ZrO2 Gate Dielectric, IEEE Electron Device Lett. 39 (2018) 405-408.

DOI: 10.1109/led.2018.2792839

Google Scholar

[7] S. Dai, Y. Zhou, Y. Zhong, et al., High fT AlGa(In)N/GaN HEMTs Grown on Si with a Low Gate Leakage and a High On/Off Current Ratio, IEEE Electron Device Lett. 39 (2018) 576-579.

DOI: 10.1109/led.2018.2809689

Google Scholar

[8] T. J. Anderson, M. J. Tadjer, J. K. Hite, et al., Effect of Reduced Extended Defect Density in MOCVD Grown AlGaN/GaN HEMTs on Native GaN Substrates, IEEE Electron Device Lett. 37 (2015) 28-30.

DOI: 10.1109/led.2015.2502221

Google Scholar

[9] I. Ben-Yaacov, Y. K. Seck, U. K. Mishra, et al., AlGaN/GaN current aperture vertical electron transistors with regrown channels, J. Appl. Phys. 95 (2004) 2073-(2078).

DOI: 10.1063/1.1641520

Google Scholar

[10] M. Kanechika, M. Sugimoto, N. Soejima, et al., A Vertical Insulated Gate AlGaN/GaN Heterojunction Field-Effect Transistor, Jpn. J. Appl. Phys. 46 (2007) L503-L505.

DOI: 10.1143/jjap.46.l503

Google Scholar

[11] A. M. Ozbek, B. J. Baliga, Planar Nearly Ideal Edge-Termination Technique for GaN Devices, IEEE Electron Device Lett. 32 (2011) 300-302.

DOI: 10.1109/led.2010.2095825

Google Scholar

[12] S. Chowdhury, H. W. Man, B. L. Swenson, et al., CAVET on Bulk GaN Substrates Achieved With MBE-Regrown AlGaN/GaN Layers to Suppress Dispersion, IEEE Electron Device Lett. 33 (2011) 41-43.

DOI: 10.1109/led.2011.2173456

Google Scholar

[13] T. Oka, Y. Ueno, T. Ina, et al., Vertical GaN-based trench metal oxide semiconductor field-effect transistors on a free-standing GaN substrate with blocking voltage of 1.6 kV, Appl. Phys. Exp. 7 (2014) 021002.

DOI: 10.7567/apex.7.021002

Google Scholar