Influence of the Thickness of Nonmagnetic Spacer on the Magnetic Properties of Fe/Cu Multilayered Nanowires

Article Preview

Abstract:

We present a systematic investigation on the equilibrium structure, stability and magnetic properties of one-dimensional Fe/Cu multilayered nanowires with different width of nonmagnetic Cu spacer using first-principles calculations. The multilayered nanowires preserve their FCC (001) directional lattice symmetry after structural optimization. It is found that the stability of Fe/Cu multilayered nanowires decreases with increasing concentration of nonmagnetic Cu layers. The calculated interlayer exchange coupling (IEC) is found to switch signs as the thickness of nonmagnetic Cu spacer increases in the nanowire, and the magnitude of the IEC value is found to decrease significantly with increasing the number of nonmagnetic Cu layers.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

93-98

Citation:

Online since:

November 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.J. Noh, Y. Miyamoto, M. Okuda, N. Hayashi, Y. K. Kim, Control of magnetic domains in Co/Pd multilayered nanowires with perpendicular magnetic anisotropy, J. Nanosci. Nanotechno. 12 (2012) 428-432.

DOI: 10.1166/jnn.2012.5404

Google Scholar

[2] F.S. Fedorov, I. Mönch, C. Mickel, K. Tschulik, B. Zhao, M. Uhlemann, A. Gebert, J. Eckert, Electrochemical deposition of Co(Cu)/Cu multilayered nanowires, J. Electrochem. Soc. 160 (2013) D13-D19.

DOI: 10.1149/2.006302jes

Google Scholar

[3] H.Z. Wang, B. Huang, H.Q. Deng, H.C. Li, W.G. Zhang, S.W. Yao, Effect of sub-layer thickness on magnetic and giant magnetoresistance properties of Ni–Fe/Cu/Co/Cu multilayered nanowire arrays, Chinese J. Chem. Eng. 23 (2015) 1231-1235.

DOI: 10.1016/j.cjche.2014.09.056

Google Scholar

[4] T. Böhnert, A.C. Niemann, A.K. Michel, S. Bäßler, J. Gooth, B. G. Tóth, K. Neuróhr, L. Péter, I. Bakonyi, V. Vega, V.M. Prida, K. Nielsch, Magnetothermopower and magnetoresistance of single Co-Ni/Cu multilayered nanowires, Phys. Rev. B 90 (2014).

DOI: 10.1103/physrevb.90.165416

Google Scholar

[5] J. Choi, S.J. Oh, H. Ju, J. Cheon, Massive fabrication of free-standing one-dimensional Co/Pt nanostructures and modulation of ferromagnetism via a programmable barcode layer effect, Nano Lett. 5 (2005) 2179.

DOI: 10.1021/nl051190k

Google Scholar

[6] Y. Peng, T. Cullis, G. Möbus, X.J. Xu, B. Inkson, Nanoscale characterization of CoPt/Pt multilayer nanowires, Nanotechnology 18 (2007) 485704.

DOI: 10.1088/0957-4484/18/48/485704

Google Scholar

[7] P. Panigrahi, R. Pati, Controlling interlayer exchange coupling in one-dimensional Fe/Pt multilayered nanowire, Phys. Rev. B 79 (2009) 014411.

DOI: 10.1103/physrevb.79.014411

Google Scholar

[8] P.P. Pal, R. Pati, Magnetic properties of one-dimensional Ni/Cu and Ni/Al multilayered nanowires: Role of nonmagnetic spacers, Phys. Rev. B 77 (2008) 144430.

DOI: 10.1103/physrevb.77.144430

Google Scholar

[9] P. Panigrahi, M.C. Valsakumar, Spacer induced magnetism and its effect on interlayer exchange coupling in Fe/(Pd, Cu, Au, Ag) multilayered nanowires, Eur. Phys. J. B 80 (2011) 459.

DOI: 10.1140/epjb/e2011-10921-8

Google Scholar

[10] M.E. McHenry, J.M. MacLaren, Iron and chromium monolayer magnetism in noble-metal hosts: Systematics of local moment variation with structure, Phys. Rev. B 43 (1991) 10611-10616.

DOI: 10.1103/physrevb.43.10611

Google Scholar

[11] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54 (1996) 11169-11186.

DOI: 10.1103/physrevb.54.11169

Google Scholar

[12] G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59 (1999) 1758-1775.

DOI: 10.1103/physrevb.59.1758

Google Scholar

[13] J.P. Perdew, S. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865-3886.

DOI: 10.1103/physrevlett.77.3865

Google Scholar

[14] H.J. Monkhorst, J.D. Pack, Special points for Brillouin-Zone intergrations, Phys. Rev. B 13 (1976) 5188-5192.

DOI: 10.1103/physrevb.13.5188

Google Scholar

[15] P. Panigrahi, R. Pati, Tuning the ferromagnetism of one-dimensional Fe/Pt/Fe multilayer barcode nanowires via the barcode layer effect, Phys. Rev. B 76 (2007) 024431.

DOI: 10.1103/physrevb.76.024431

Google Scholar

[16] A.V. dosSantosa, C.A. Kuhnen, Magnetic and electronic structure of Fe/Cu bilayers, Thin Solid Films 350 (1999) 186-191.

DOI: 10.1016/s0040-6090(98)01399-6

Google Scholar

[17] H.R. Gong, L.T. Kong, B.X. Liu, Structural stability and magnetic properties of metastable Fe-Cu alloys studied by ab initio calculations and molecular dynamics simulations, Phys. Rev. B 69 (2004) 054203.

DOI: 10.1103/physrevb.69.054203

Google Scholar

[18] S.S. P. Parkin, R. Bhadra, K.P. Roche, Oscillatory magnetic exchange coupling through thin copper layers, Phys. Rev. Lett. 66 (1991) 2152-2155.

DOI: 10.1103/physrevlett.66.2152

Google Scholar

[19] M.T. Johnson, S.T. Purcell, N.W.E. McGee, R. Coehoorn, J. aan de Stegge, W. Hoving, Structural dependence of the oscillatory exchange interaction across Cu layers, Phys. Rev. Lett. 68 (1992) 2688-2691.

DOI: 10.1103/physrevlett.68.2688

Google Scholar

[20] O.O. Brovko, P.A. Ignatiev, V.S. Stepanyuk, P. Bruno, Tailoring exchange interactions in engineered nanostructures: an ab initio study, Phys. Rev. Lett. 101 (2008) 036809.

DOI: 10.1103/physrevlett.101.036809

Google Scholar