[1]
S.J. Noh, Y. Miyamoto, M. Okuda, N. Hayashi, Y. K. Kim, Control of magnetic domains in Co/Pd multilayered nanowires with perpendicular magnetic anisotropy, J. Nanosci. Nanotechno. 12 (2012) 428-432.
DOI: 10.1166/jnn.2012.5404
Google Scholar
[2]
F.S. Fedorov, I. Mönch, C. Mickel, K. Tschulik, B. Zhao, M. Uhlemann, A. Gebert, J. Eckert, Electrochemical deposition of Co(Cu)/Cu multilayered nanowires, J. Electrochem. Soc. 160 (2013) D13-D19.
DOI: 10.1149/2.006302jes
Google Scholar
[3]
H.Z. Wang, B. Huang, H.Q. Deng, H.C. Li, W.G. Zhang, S.W. Yao, Effect of sub-layer thickness on magnetic and giant magnetoresistance properties of Ni–Fe/Cu/Co/Cu multilayered nanowire arrays, Chinese J. Chem. Eng. 23 (2015) 1231-1235.
DOI: 10.1016/j.cjche.2014.09.056
Google Scholar
[4]
T. Böhnert, A.C. Niemann, A.K. Michel, S. Bäßler, J. Gooth, B. G. Tóth, K. Neuróhr, L. Péter, I. Bakonyi, V. Vega, V.M. Prida, K. Nielsch, Magnetothermopower and magnetoresistance of single Co-Ni/Cu multilayered nanowires, Phys. Rev. B 90 (2014).
DOI: 10.1103/physrevb.90.165416
Google Scholar
[5]
J. Choi, S.J. Oh, H. Ju, J. Cheon, Massive fabrication of free-standing one-dimensional Co/Pt nanostructures and modulation of ferromagnetism via a programmable barcode layer effect, Nano Lett. 5 (2005) 2179.
DOI: 10.1021/nl051190k
Google Scholar
[6]
Y. Peng, T. Cullis, G. Möbus, X.J. Xu, B. Inkson, Nanoscale characterization of CoPt/Pt multilayer nanowires, Nanotechnology 18 (2007) 485704.
DOI: 10.1088/0957-4484/18/48/485704
Google Scholar
[7]
P. Panigrahi, R. Pati, Controlling interlayer exchange coupling in one-dimensional Fe/Pt multilayered nanowire, Phys. Rev. B 79 (2009) 014411.
DOI: 10.1103/physrevb.79.014411
Google Scholar
[8]
P.P. Pal, R. Pati, Magnetic properties of one-dimensional Ni/Cu and Ni/Al multilayered nanowires: Role of nonmagnetic spacers, Phys. Rev. B 77 (2008) 144430.
DOI: 10.1103/physrevb.77.144430
Google Scholar
[9]
P. Panigrahi, M.C. Valsakumar, Spacer induced magnetism and its effect on interlayer exchange coupling in Fe/(Pd, Cu, Au, Ag) multilayered nanowires, Eur. Phys. J. B 80 (2011) 459.
DOI: 10.1140/epjb/e2011-10921-8
Google Scholar
[10]
M.E. McHenry, J.M. MacLaren, Iron and chromium monolayer magnetism in noble-metal hosts: Systematics of local moment variation with structure, Phys. Rev. B 43 (1991) 10611-10616.
DOI: 10.1103/physrevb.43.10611
Google Scholar
[11]
G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54 (1996) 11169-11186.
DOI: 10.1103/physrevb.54.11169
Google Scholar
[12]
G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59 (1999) 1758-1775.
DOI: 10.1103/physrevb.59.1758
Google Scholar
[13]
J.P. Perdew, S. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865-3886.
DOI: 10.1103/physrevlett.77.3865
Google Scholar
[14]
H.J. Monkhorst, J.D. Pack, Special points for Brillouin-Zone intergrations, Phys. Rev. B 13 (1976) 5188-5192.
DOI: 10.1103/physrevb.13.5188
Google Scholar
[15]
P. Panigrahi, R. Pati, Tuning the ferromagnetism of one-dimensional Fe/Pt/Fe multilayer barcode nanowires via the barcode layer effect, Phys. Rev. B 76 (2007) 024431.
DOI: 10.1103/physrevb.76.024431
Google Scholar
[16]
A.V. dosSantosa, C.A. Kuhnen, Magnetic and electronic structure of Fe/Cu bilayers, Thin Solid Films 350 (1999) 186-191.
DOI: 10.1016/s0040-6090(98)01399-6
Google Scholar
[17]
H.R. Gong, L.T. Kong, B.X. Liu, Structural stability and magnetic properties of metastable Fe-Cu alloys studied by ab initio calculations and molecular dynamics simulations, Phys. Rev. B 69 (2004) 054203.
DOI: 10.1103/physrevb.69.054203
Google Scholar
[18]
S.S. P. Parkin, R. Bhadra, K.P. Roche, Oscillatory magnetic exchange coupling through thin copper layers, Phys. Rev. Lett. 66 (1991) 2152-2155.
DOI: 10.1103/physrevlett.66.2152
Google Scholar
[19]
M.T. Johnson, S.T. Purcell, N.W.E. McGee, R. Coehoorn, J. aan de Stegge, W. Hoving, Structural dependence of the oscillatory exchange interaction across Cu layers, Phys. Rev. Lett. 68 (1992) 2688-2691.
DOI: 10.1103/physrevlett.68.2688
Google Scholar
[20]
O.O. Brovko, P.A. Ignatiev, V.S. Stepanyuk, P. Bruno, Tailoring exchange interactions in engineered nanostructures: an ab initio study, Phys. Rev. Lett. 101 (2008) 036809.
DOI: 10.1103/physrevlett.101.036809
Google Scholar