Localization Study of a Cold Atom BEC in Two-Dimensional Bessel Optical Lattices

Article Preview

Abstract:

In order to investigate the stability and dynamics properties of a cold atom Bose-Einstein Condensate (BEC) in two-dimensional Bessel optical lattices, the stability condition of the system is analyzed and the corresponding Gross-pitaevskii equation (GPE) is solved in this paper by time-dependent variational method and numerical simulation. Firstly, the Euler-Lagrange equation containing the parameters describing the system stability and the effective potential energy needed by the variational analysis method to analyze the system stability is obtained by using the adjustable exponent Gaussian trial wave function. Secondly, according to the analytical solution of Euler-Lagrange equation and the local minimum value of potential energy, the stability condition of the system is further illuminated. Finally, the influence mechanism of these parameters on the local dynamics is revealed by solving the corresponding GPE with numerical method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

105-112

Citation:

Online since:

November 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Fetter A L. Bose-Einstein Condensates in Dilute Trapped Atomic Gases, J. Journal of Low Temperature Physics. 129(5-6) (2002)263-321.

Google Scholar

[2] Anderson M H. Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor, M. // Collected Papers Of Carl Wieman. (2015)453-456.

DOI: 10.1142/9789812813787_0062

Google Scholar

[3] Davis K B, Mewes M, Andrews M R, et al. Bose-Einstein condensation in a gas of sodium atoms, J. Physical Review Letters. 75(22) (1995)3969-3973.

DOI: 10.1103/physrevlett.75.3969

Google Scholar

[4] Bradley C C, Sackett C A, Tollett J J, et al. Evidence of Bose-Einstein Condensation in an Atomic Gas with Attractive Interactions, J. Physical Review Letters. 75(9) (1995)1687.

DOI: 10.1103/physrevlett.75.1687

Google Scholar

[5] Fallani L, De S L, Lye J E, et al. Observation of dynamical instability for a Bose-Einstein condensate in a moving 1D optical lattice, J. Physical Review Letters. 93(14) (2004)140406.

DOI: 10.1103/physrevlett.93.140406

Google Scholar

[6] Kartashov Y V, Carretero-Gonzalez R, Malomed B A, et al. Multipole-mode solitons in Bessel optical lattices, J. Optics Express. 13(26) (2005)10703-10710.

DOI: 10.1364/opex.13.010703

Google Scholar

[7] Mihalache D, Mazilu D, Lederer F, et al. Stable spatiotemporal solitons in bessel optical lattices, J. Physical Review Letters. 95(2) (2005)023902.

DOI: 10.1103/physrevlett.95.023902

Google Scholar

[8] Zhang F. Numerical simulation of nonlinear Schro¨dinger systems: a new conservative scheme, M. Elsevier Science Inc. (1995).

Google Scholar

[9] Muruganandam P, Adhikari S K. Fortran programs for the time-dependent Gross–Pitaevskii equation in a fully anisotropic trap, J. Computer Physics Communications. 180(10) (2009)1888-(1912).

DOI: 10.1016/j.cpc.2009.04.015

Google Scholar

[10] Kartashov Y V, Vysloukh V A, Torner L. Stable Ring-Profile Vortex Solitons in Bessel Optical Lattices, J. Physical Review Letters. 94(4) (2005)043902.

DOI: 10.1103/physrevlett.94.043902

Google Scholar

[11] Kartashov Y V, Egorov A A, Vysloukh V A, et al. Stable soliton complexes and azimuthal switching in modulated Bessel optical lattices, J. Physical Review E Statistical Nonlinear & Soft Matter Physics. 70(6 Pt 2)(2004)065602.

DOI: 10.1103/physreve.70.065602

Google Scholar

[12] Dong L, Wang J, Wang H, et al. Bessel lattice solitons in competing cubic-quintic nonlinear media, J. Physical Review A. 79(79) (2009)11662-11662.

DOI: 10.1103/physreva.79.013807

Google Scholar

[13] B. B. Baizakov, A. Bouketir, A. Messikh, et al. Variational analysis of flat-top solitons in Bose-Einstein condensates, J. International Journal of Modern Physics B. 25(18) (2011)2427-2440.

DOI: 10.1142/s0217979211101521

Google Scholar