[1]
Deng H, Haug H, Yamamoto Y, Exciton-polariton Bose-Einstein condensation, J. Review of Modern Physics. 82(2010)1489-1537.
DOI: 10.1103/revmodphys.82.1489
Google Scholar
[2]
Bajoni D, Semenova E, LemaÎ A, et al, Optical bistability in a GaAs-based polariton diode, J. Physical Review Letters, 101(2008)266402-266405.
DOI: 10.1103/physrevlett.101.266402
Google Scholar
[3]
Goblot V, Nguyen H S, Carusotto I, et al, Phase-Controlled Bistability of a Dark Soliton Train in a Polariton Fluid, J. Physical Review Letters, 117(2016) 217401-217405.
DOI: 10.1103/physrevlett.117.217401
Google Scholar
[4]
Luk M H, Tse Y C, Kwong N H, et al, Transverse optical instability patterns in semiconductor microcavities: polariton scattering and low-intensity all-optical switching, J. Physical Review B Condensed Matter, 87(2013) 2746-2752.
DOI: 10.1103/physrevb.87.205307
Google Scholar
[5]
Werner A, Egorov O A, Lederer F, Exciton-polariton patterns in coherently pumped semiconductor microcavities, J. Physical.Review.B, 89(2014)2495-2502.
DOI: 10.1103/physrevb.89.245307
Google Scholar
[6]
Liew T C H, Egorov O A, Matuszewski M, et al, Instability-induced formation and non-equilibrium dynamics of phase defects in polariton condensates, J. Physical Review B, 91(2015) 085413-085425.
DOI: 10.1103/physrevb.91.085413
Google Scholar
[7]
Cancellieri E, Boulier T, Hivet R, et al, Merging of vortices and antivortices in polariton superfluids, J. Physical Review B, 90(2014) 214518-214524.
DOI: 10.1103/physrevb.90.214518
Google Scholar
[8]
Padhi B, Duboscq R, Niranjan A, et al, Vortex dynamics of rotating Bose-Einstein condensate of microcavity polaritons, J. European Physical Journal B, 88(2015)1-10.
DOI: 10.1140/epjb/e2015-50775-4
Google Scholar
[9]
Boulier T, Cancellieri E, Nicolas D Sangouard, et al. Lattices of quantized vortices in polariton superfluids, J. Comptes rendus - Physique, 17(2016)893-907.
DOI: 10.1016/j.crhy.2016.05.005
Google Scholar
[10]
Ma X, Egorov O A, Schumacher S. Creation and Manipulation of Stable Dark Solitons and Vortices in Microcavity Polariton Condensates. J. Physical Rev Letters, 118(2017) 157401-157407.
DOI: 10.1103/physrevlett.118.157401
Google Scholar
[11]
Ostrovskaya E A, Abdullaev J, Desyatnikov A S, et al, Dissipative solitons and vortices in polariton Bose-Einstein condensates, J. Physical Review A, 86(2012)105-112.
DOI: 10.1103/physreva.86.013636
Google Scholar
[12]
Smirnov L A, Smirnova D A, Ostrovskaya E A, et al, Dynamics and stability of dark solitons in exciton-polariton condensates, J. Physical Review B, 89(2014) 235310-235321.
DOI: 10.1103/physrevb.89.235310
Google Scholar
[13]
Silva E V C, Monerat G A, Neto G D O, et al, Spectral: Solving Schroedinger and Wheeler–DeWitt equations in the positive semi-axis by the spectral method, J. Computer Physics Communications, 185(2014) 380-391.
DOI: 10.1016/j.cpc.2013.09.007
Google Scholar
[14]
Pekkilä J, Väisälä M, Käpylä M, et al, Methods for compressible fluid simulation on GPUs using high-order finite differences, J. Computer Physics Communications, 217(2017)11-22.
DOI: 10.1016/j.cpc.2017.03.011
Google Scholar
[15]
Antoine X, Duboscq R. GPELab, a Matlab toolbox to solve Gross-Pitaevskii equations I: Computation of stationary solutions, J. Computer Physics Communications, 185(2014)2969-2991.
DOI: 10.1016/j.cpc.2014.06.026
Google Scholar
[16]
Voronych O, Buraczewski A, Matuszewski M, et al. Numerical modeling of exciton-polariton Bose–Einstein condensate in a microcavity , J. Computer Physics Communications, 215(2017) 246-258.
DOI: 10.1016/j.cpc.2017.02.021
Google Scholar
[17]
B.B. Baizakov,A.Bouketir,A.Messikh,et al,Variational analysis of flat-top solitons in Bose-Einstein condensates, J. International Journal of Modern Physics B,25(2011) 2427-2440.
DOI: 10.1142/s0217979211101521
Google Scholar
[18]
Iii F I M, Dowling J P, Dai W, et al, Sagnac interferometry with coherent vortex superposition states in exciton-polariton condensates, J.Physical Review A, 93(2016).
DOI: 10.1103/physreva.93.053603
Google Scholar
[19]
Ankiewicz A, Akhmediev N, Devine N. Dissipative solitons with a Lagrangian approach, J. Optical Fiber Technology, 13(2007) 91-97.
DOI: 10.1016/j.yofte.2006.12.001
Google Scholar