Spin Spatial Frequency Response of Atomic Magnetometer

Article Preview

Abstract:

We describe a method for measuring the spin spatial frequency response in a Cs vapor cell by using a digital micro-mirror device (DMD) to modulate the pumping light both spatially and temporally. An equivalent space-alternative magnetic field is created by this way. The pumping light through the Cs vapor cell is measured and analyzed in spatial frequency domain. We obtain the spatial frequency response of the Cs vapor cell from 1.4 cm-1 to 364.9 cm-1. The theoretical results of the spatial frequency response according to Fick's second diffusion law agree with the experimental results. This method provides an alternate approach for spatial characterization and three-dimensional imaging of spins.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

81-86

Citation:

Online since:

November 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X. Y. Hu, H. F. Dong, H. C. Huang, L. Chen, and Y. Gao, Spatial dynamics analysis of polarized atom vapor,, (2018).

Google Scholar

[2] I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, A subfemtotesla multichannel atomic magnetometer,, Nature, vol. 422, pp.596-599, April (2003).

DOI: 10.1038/nature01484

Google Scholar

[3] A. Gusarov, D. Levron, E. Paperno, R. Shuker, and A. B.-A. Baranga, Three-Dimensional Magnetic Field Measurements in a Single SERF Atomic-Magnetometer Cell,, IEEE Transactions on Magnetics, vol. 45, pp.4478-4411, (2009).

DOI: 10.1109/tmag.2009.2021404

Google Scholar

[4] K. Kim, S. Begus, H. Xia, S. K. Lee, V. Jazbinsek, Z. Trontelj, et al., Multi-channel atomic magnetometer for magnetoencephalography: a configuration study,, Neuroimage, vol. 89, pp.143-151, Apr 1 (2014).

DOI: 10.1016/j.neuroimage.2013.10.040

Google Scholar

[5] D. S. Yosuke Ito, Keigo Kamada, Tetsuo Kobayashi, <2014 Measurements of Magnetic Field Distributions With an Optically Pumped K-Rb Hybrid Atomic Magnetometer.pdf>,, IEEE TRANSACTIONS ON MAGNETICS, vol. 50, (2014).

DOI: 10.1109/tmag.2014.2329856

Google Scholar

[6] S. Appelt, A. B. Baranga, C. J. Erickson, M. V. Romalis, A. R. Young, and W. Happer, Theory of spin-exchange optical pumping of 3He and 129Xe,, Physical Review A, vol. 58, pp.1412-1439, Aug. (1998).

Google Scholar

[7] D. Giel, G. Hinz, D. Nettels, and A. Weis, Diffusion of Cs atoms in Ne buffer gas measured by optical magnetic resonance tomography,, Optics Express, vol. 6, pp.251-6, (2000).

DOI: 10.1364/oe.6.000251

Google Scholar

[8] A. Weis, D. Giel, and D. Nettels, Motion of vapor atoms studied by optical magnetic resonance tomography,, Laser Physics, vol. 11, pp.470-475, (2001).

Google Scholar

[9] I. Savukov, Gradient-echo 3D imaging of Rb polarization in fiber-coupled atomic magnetometer,, Journal of Magnetic Resonance, vol. 256, pp.9-13, (2015).

DOI: 10.1016/j.jmr.2015.03.012

Google Scholar

[10] A. P. Colombo, T. R. Carter, A. Borna, Y. Y. Jau, C. N. Johnson, A. L. Dagel, et al., Four-channel optically pumped atomic magnetometer for magnetoencephalography,, Optics Express, vol. 24, pp.15403-15416, (2016).

DOI: 10.1364/oe.24.015403

Google Scholar

[11] M. A. Rosenberry, J. P. Reyes, D. Tupa, and T. J. Gay, Radiation trapping in rubidium optical pumping at low buffer-gas pressures,, Physical Review A, vol. 75, p.023401, (2007).

DOI: 10.1103/physreva.75.023401

Google Scholar

[12] W. Gawlik and S. Pustelny, Optical Magnetometry,, Nature Physics, vol. 3, pp.227-234, (2009).

Google Scholar

[13] E. Vliegen, S. Kadlecek, L. W. Anderson, T. G. Walker, C. J. Erickson, and W. Happer, Faraday rotation density measurements of optically thick alkali metal vapors,, Nuclear Instruments & Methods in Physics Research, vol. 460, pp.444-450, (2001).

DOI: 10.1016/s0168-9002(00)01061-5

Google Scholar