Synthesis and Ionic Conductivity of MAlSi3O8 (M = Li, Na, K)

Article Preview

Abstract:

MAlSi3O8 (M = Li, Na, K) was synthesized by solid-phase reaction at 1000 °C using M2CO3 (M = Li, Na, K), Al2O3, and SiO2 as the starting materials, and its ionic conduction was studied in the temperature range 475–800 K. It was confirmed from powder X-ray diffraction profiles that the crystalline phases of the prepared MAlSi3O8 were the same as those of orthoclase. Moreover, the ionic conductivity of NaAlSi3O8 was about 10 times higher than that of LiAlSi3O8 and KAlSi3O8. The activation energies for ionic conduction were estimated to be in the range of 0.70–0.77 eV, with NaAlSi3O8 exhibiting the lowest activation energy. The result suggests that the magnitude of the activation energy cannot be determined only from the ionic radius.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

9-14

Citation:

Online since:

November 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Knauth, Inorganic solid Li ion conductors: An overview, Solid State Ionics 180 (2009) 911–916.

DOI: 10.1016/j.ssi.2009.03.022

Google Scholar

[2] J. W. Fergus, Ceramic and polymeric solid electrolytes for lithium-ion batteries, J. Power Sources 195 (2010) 4554–4569.

DOI: 10.1016/j.jpowsour.2010.01.076

Google Scholar

[3] J. W. Fergus, Ion transport in sodium ion conducting solid electrolytes, Solid State Ionics 227 (2012) 102-112.

DOI: 10.1016/j.ssi.2012.09.019

Google Scholar

[4] B. L. Ellis and L. F. Nazar, Sodium and sodium-ion energy storage batteries, Curr. Opin. Solid State Mater. Sci. 16 (2012) 168–177.

DOI: 10.1016/j.cossms.2012.04.002

Google Scholar

[5] M. Marcinek, J. Syzdek, M. Marczewski, M. Piszcz, L. Niedzicki, M. Kalita, A. Plewa-Marczewska, A. Bitner, P. Wieczorek, T. Trzeciak, M. Kasprzyk, P.Łężak, Z. Zukowska, A. Zalewska, W. Wieczorek, Electrolytes for Li-ion transport – Review, Solid State Ionics 276 (2015).

DOI: 10.1016/j.ssi.2015.02.006

Google Scholar

[6] E. I. Burmakin and G. Sh. Shekhtman, Potassium-conducting solid electrolytes in the K3− 2xCdxPO4 system, Russ. J. Electrochem. 50 (2014) 496-499.

DOI: 10.1134/s1023193514050036

Google Scholar

[7] A. Eftekhari, Potassium secondary cell based on Prussian blue cathode, J. Power Sources 126 (2004) 221–228.

DOI: 10.1016/j.jpowsour.2003.08.007

Google Scholar

[8] Luo W, Wan J, Ozdemir, Bao W, Chen Y, Dai J, Lin H, Xu Y, Gu F, Barone V, Hu L, Potassium Ion Batteries with Graphitic Materials, Nano Lett. 15 (2015) 7671−7677.

DOI: 10.1021/acs.nanolett.5b03667

Google Scholar

[9] S. Furusawa and Y. Minami, Synthesis and Ionic Conductivity of KAlSi3O8, Key Eng. Mater. 698 (2016) 8-12.

Google Scholar

[10] D. Stroud, The effective medium approximations: Some recent developments, Superlattices and Microstructures, 23 (1998) 567-573.

DOI: 10.1006/spmi.1997.0524

Google Scholar

[11] D. B. McWhan, S. J. Allen, Jr., J. P. Remeika, and P. D. Dernier, Ion-Ion Correlations and Diffusion in β-Alumina, Phys. Rev. Lett. 35 (1975) 953-956.

DOI: 10.1103/physrevlett.35.953

Google Scholar

[12] J.C. Wang, M. Gaffari, and Sang-il Choi, On the ionic conduction in β-alumina: Potential energy curves and conduction mechanism, J. Chem. Phys. 63 (1975) 772-778.

DOI: 10.1063/1.431356

Google Scholar

[13] P. Padma Kumar and S. Yashonath, Ionic conduction in the solid state, J. Chem. Sci. 118 (2006) 135–154.

Google Scholar

[14] K. Funke, B. Roling, and M. Lange, Dynamics of mobile ions in crystals, glasses and melts, Solid State Ionics 105 (1998) 195–208.

DOI: 10.1016/s0167-2738(97)00465-7

Google Scholar

[15] B. Roling, A. Happe, K. Funke, and M. D. Ingram, Carrier Concentrations and Relaxation Spectroscopy: New Information from Scaling Properties of Conductivity Spectra in Ionically Conducting Glasses, Phys. Rev. Lett. 78 (1997) 2160-2163.

DOI: 10.1103/physrevlett.78.2160

Google Scholar

[16] B. Roling, Scaling properties of the conductivity spectra of glasses and supercooled melts, Solid State Ionics 105 (1998) 185-193.

DOI: 10.1016/s0167-2738(97)00463-3

Google Scholar

[17] R. Belin, R Belin, G Taillades, A Pradel, M Ribes, Ion dynamics in superionic chalcogenide glasses: Complete conductivity spectra, Solid State Ionics 136-137 (2000) 1025-1029.

DOI: 10.1016/s0167-2738(00)00556-7

Google Scholar