Preparation of Degradable Sago Starch Film Incorporated with Zinc Oxide (ZnO) Nanoparticles for Enhanced Chemical Barrier and Mechanical Properties

Article Preview

Abstract:

The main objective of this study is to reinforce the mechanical strength and water resistance abilities of sago starch biopolymer by incorporating ZnO nanofillers. The biopolymer based nanocomposite films were cast utilizing different weight percentages of ZnO nanofillers (0, 1, 3 or 5 wt%) in sago starch matrix through solution casting technique. Uniform dispersing of ZnO nanofillers throughout the sago starch matrix was achieved by sonication and also to prevent the formation of ZnO nanoparticles aggregates. This was to further reinforce the chemical barrier properties of the film The results illustrated that with the increase of loading of ZnO nanoparticles from 0 to 5 wt%, the tensile strength and elastic modulus improved from 0.180 to 0.980 MPa and from 3.410 to 6.401 MPa respectively for the films, attributing to the high surface to volume ratios, the high mechanical strength of ZnO nanoparticles and the strong nanofiller-matrix interfacial adhesion. The elongation at break also enhanced owing to the slippage of ZnO nanofillers and the oriented sago starch polymer which activated the shear flow of the sago starch polymer. Sago starch nanocomposites with ZnO loadings varied from 0 to 5 wt% demonstrated decreased water vapour permeability from 4.992 × 10−10 g m−1 s−1 Pa−1 to 2.723 × 10−10 g m−1 s−1 Pa−1.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

104-110

Citation:

Online since:

December 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. J. Kirwan and J. W. Strawbridge: Food and beverage packaging tech. (1995), pp.157-212.

Google Scholar

[2] A. S. Abreu, M, de Sá A. Oliveira, R. M. Rodrigues, M. A. Cerqueira, A.A. Vicente, and A. Machado A, Carbohyd. polym., vol. 129 (2015), pp.127-134.

Google Scholar

[3] X. Tang, P. Kumar, S. Alavi, and K. Sandeep. Crit. Rev. food sci. nutri. vol. 52 (2012), pp.426-442.

Google Scholar

[4] E. George, T. Sullivan, and E. Park, Polym. Eng. Sci., vol. 34 (1994), pp.17-23.

Google Scholar

[5] F. A. Fazli, A. Babazadeh and F. A. Fazli, Int. J. Chem. Mol. Nucl. Mat. Metallurg. Eng., vol. 7 (2015), pp.829-832.

Google Scholar

[6] M. Nafchi, R. Nassiri, S. Sheibani, F. Ariffin, and A. Karim, Carbohyd. Polym. vol. 96 (2013), pp.233-239.

Google Scholar

[7] X. Ma, P. R. Chang, J. Yang, and J. Yu, Carbohyd. Polym., vol. 75 (2009), pp.472-478.

Google Scholar

[8] S. Tunç, and O. Duman, App. Clay Sci., vol. 48 (2010), pp.414-424.

Google Scholar

[9] S. Ranjan, N. Dasgupta, A. R. Chakraborty, S. Melvin, C. Ramalingam, R. Shanker, and A. Kumar, J. Nanopar. Res., vol. 16 (2014), p.2464.

Google Scholar

[10] B. Crist, Mat. Sci. tech., (1993), (eds R. W. Cahn, P. Haasen and E. J. Kramer).

Google Scholar

[11] S. A. Ponnusami, S. Turteltaub and S. van der Zwaag, Eng. Fract. Mech., vol. 149 (2015), pp.170-190.

Google Scholar

[12] S. Abdolmohammadi, S. Siyamak, N. A. Ibrahim, W. M. Z. W. Yunus, M. Z. A. Rahman, S. Azizi, and A. Fatehi, Int. J. mol. Sci., vol. 13 (2012), pp.4508-4522.

DOI: 10.3390/ijms13044508

Google Scholar

[13] M. Aydinli and M. Tutas, LWT-Food Sci. Tech., vol. 33 (2000), pp.63-67.

Google Scholar

[14] J. Yin and B. Deng, Journal of Membrane Science, vol. 479, pp.256-275.

Google Scholar

[15] A. A. Gokhale and I. Lee, 2014, Recent advances in the fabrication of nanostructured barrier films,, J. nanosci. Nanotech., vol. 14 (2014), pp.2157-2177.

DOI: 10.1166/jnn.2014.8517

Google Scholar

[16] M. M. Reddy, S. Vivekanandhan, M. Misra, S. K. Bhatia, and A. K. Mohanty. Progr. Poly. Sci. vol. 38 (2013), no. 10, pp.1653-1689.

Google Scholar

[17] C. A. Huang, C. H. Chung, F. Y. Hsu and K. C. Li. Int. J. Mat. Mech. Manu. Vol. 5 (2017), pp.1-5.

Google Scholar