The Preparation and Characterization of Fluorinated Graphene Oxide with Different Degrees of Oxidation

Article Preview

Abstract:

For many excellent graphene derivatives, tailoring the material properties is crucial to get a broader application. In the present work, a series of fluorinated graphene oxide (FGO) with various oxidation degree were synthesized using a modified Hummers method at different reaction temperatures. The structure and property of FGO were analyzed by X-ray diffraction (XRD), Fourier transform infra-red spectra (FT-IR), X-ray photoelectron spectra (XPS) and Zeta potential analysis. The results indicate that the oxygen contents range from 5.61 % to 21.96 % in FGO can be tuned by altering the reaction temperatures. The oxygen in FGO is presented mainly in the form of epoxide and carboxyl groups. With increasing reaction temperature from 50 °C to 90 °C, the oxygen content in FGO decreases and thicker multilayered FGO is formed with lower dispersibility.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

89-97

Citation:

Online since:

December 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Chen, H. Feng and J. Li: Graphene oxide: preparation, functionalization, and electrochemical applications, Chemical reviews, 2012 Aug 14; 112(11), pp.6027-6053.

DOI: 10.1021/cr300115g

Google Scholar

[2] C. Galande, W. Gao, A. Mathkar, A. M. Dattelbaum, T. N. Narayanan, A. D. Mohite, P. M. Ajayan: Science and engineering of graphene oxide. Particle & Particle Systems Characterization, 2014 Jun 1, vol. 31(6), pp.619-38.

DOI: 10.1002/ppsc.201300232

Google Scholar

[3] K. Krishnamoorthy, M. Veerapandian, K. Yun and S. J. Kim: The chemical and structural analysis of graphene oxide with different degrees of oxidation, Carbon, 2013 Mar 31, vol. 53, pp.38-49.

DOI: 10.1016/j.carbon.2012.10.013

Google Scholar

[4] X. Li, H. Wang, J. T. Robinson, H. Sanchez, G. Diankov and H. Dai: Simultaneous nitrogen doping and reduction of graphene oxide, Journal of the American Chemical Society, 2009 Oct 9, vol. 131(43), pp.15939-15944.

DOI: 10.1021/ja907098f

Google Scholar

[5] H. Wang, Q. Hao, X. Yang, L. Lu and X. Wang: Graphene oxide doped polyaniline for supercapacitors, Electrochemistry Communications, 2009 Jun 30, vol. 11(6), pp.1158-1161.

DOI: 10.1016/j.elecom.2009.03.036

Google Scholar

[6] Z. Wang, J. Wang, Z. Li, P. Gong, X. Liu, L. Zhang, J. Ren, H. Wang and S. Yang: Synthesis of fluorinated graphene with tunable degree of fluorination, Carbon, 2012 Dec 31, vol. 50(15), pp.5403-5410.

DOI: 10.1016/j.carbon.2012.07.026

Google Scholar

[7] W. Feng, P. Long, Y. Feng and Y. Li: Two-Dimensional Fluorinated Graphene: Synthesis, Structures, Properties and Applications, Advanced Science, 2016 Jul 1, vol. 3(7).

DOI: 10.1002/advs.201500413

Google Scholar

[8] L. Ma, A. H. Hart, S. Ozden, R. Vajtai and P. M. Ajayan: Spiers Memorial Lecture, Faraday discussions, 2014 Dec 3, vol. 173, pp.9-46.

DOI: 10.1039/c4fd90039a

Google Scholar

[9] R. Romero Aburto: Fluorinated Graphene Oxide: structure, morphology and its potential use in biological applications, Rice Univ, PhD thesis, (2014).

Google Scholar

[10] A. Mathkar, T. N. Narayanan, L. B. Alemany, P. Cox, P. Nguyen, G. Gao, P. Chang, R. Romero-Aburto, S. A. Mani and P. M. Ajayan: Synthesis of fluorinated graphene oxide and its amphiphobic properties, Particle & Particle Systems Characterization, 2013 Mar 1, vol. 30(3), pp.266-272.

DOI: 10.1002/ppsc.201200091

Google Scholar

[11] H. K. Touhara, K. Kadono, Y. Fujii and N. Watanabe: On the structure of graphite fluoride, Zeitschrift für anorganische und allgemeine Chemie, 1987 Jan 1, vol. 544(1), pp.7-20.

DOI: 10.1002/zaac.19875440102

Google Scholar

[12] P. A. Khavrel, E. V. Skokan, A. V. Rybalchenko, K. I. Maslakov, N. S. Chilingarov, S. A. Baskakov, Y. M. Shulga, M. V. Polyakova and A. A. Goryunkov: Fluorinated microwave exfoliated graphite oxide: structural features and double layer capacitance, Fullerenes, Nanotubes and Carbon Nanostructures, 2016 Apr 2, vol. 24(4), pp.266-272.

DOI: 10.1080/1536383x.2016.1149815

Google Scholar

[13] D. Damien, P. M. Sudeep, T. N. Narayanan, M. R. Anantharaman, P. M. Ajayan, M. M. Shaijumon: Fluorinated graphene based electrodes for high performance primary lithium batteries, RSC Advances, 2013, vol. 3(48), pp.25702-25706.

DOI: 10.1039/c3ra45377d

Google Scholar

[14] I. Y. Jeon, M. J. Ju, J. Xu, H. J. Choi, J. M. Seo, M. J. Kim, I. T. Choi, H. M. Kim, J. C. Kim, J. J. Lee and H. K. Liu: Edge‐Fluorinated Graphene Nanoplatelets as High Performance Electrodes for Dye‐Sensitized Solar Cells and Lithium Ion Batteries, Advanced Functional Materials, 2015 Feb 1, vol. 25(8), pp.1170-1179.

DOI: 10.1002/adfm.201403836

Google Scholar

[15] P. M. Sudeep, S. Vinayasree, P. Mohanan, P. M. Ajayan, T. N. Narayanan and M. R. Anantharaman: Fluorinated graphene oxide for enhanced S and X-band microwave absorption, Applied Physics Letters, 2015 Jun 1, vol. 106(22), p.221603.

DOI: 10.1063/1.4922209

Google Scholar

[16] T. Bharathidasan, T. N. Narayanan, S. Sathyanaryanan, S. S. Sreejakumari: Above 170 water contact angle and oleophobicity of fluorinated graphene oxide based transparent polymeric films, Carbon, 2015 Apr 30, vol. 84, pp.207-213.

DOI: 10.1016/j.carbon.2014.12.004

Google Scholar

[17] A. Maio, D. Giallombardo, R. Scaffaro, A. P. Piccionello and I. Pibiri: Synthesis of a fluorinated graphene oxide–silica nanohybrid: improving oxygen affinity, RSC Advances, 2016, vol. 6(52), pp.46037-46047.

DOI: 10.1039/c6ra02585d

Google Scholar

[18] P. Gong, J. Wang, K. Hou, Z. Yang, Z. Wang, Z. Liu, X. Han and S. Yang: Small but strong: The influence of fluorine atoms on formation and performance of graphene quantum dots using a gradient F-sacrifice strategy, Carbon, 2017 Feb 28, vol. 112, pp.63-71.

DOI: 10.1016/j.carbon.2016.10.091

Google Scholar

[19] S. Radhakrishnan, A. Samanta, P. M. Sudeep, K. L. Maldonado, S. A. Mani, G. Acharya, C. S. Tiwary, A. K. Singh and P. M. Ajayan: Metal‐Free Dual Modal Contrast Agents Based on Fluorographene Quantum Dots, Particle & Particle Systems Characterization, 2017 Jan 1, vol. 34(1).

DOI: 10.1002/ppsc.201600221

Google Scholar

[20] P. Gong, K. Hou, X. Ye, L. Ma, J. Wang and S. Yang: Synthesis of highly luminescent fluorinated graphene quantum dots with tunable fluorine coverage and size, Materials Letters, 2015 Mar 15, vol. 143, pp.112-115.

DOI: 10.1016/j.matlet.2014.12.058

Google Scholar

[21] P. Gong, Z. Yang, W. Hong, Z. Wang, K. Hou, J. Wang and S. Yang: To lose is to gain: Effective synthesis of water-soluble graphene fluoroxide quantum dots by sacrificing certain fluorine atoms from exfoliated fluorinated graphene, Carbon, 2015 Mar 31, vol. 83, pp.152-161.

DOI: 10.1016/j.carbon.2014.11.027

Google Scholar

[22] H. Sun, H. Ji, E. Ju, Y. Guan, J. Ren and X. Qu: Synthesis of Fluorinated and Nonfluorinated Graphene Quantum Dots through a New Top-Down Strategy for Long-Time Cellular Imaging, Chemistry-A European Journal, 2015 Feb 23, vol. 21(9), pp.3791-3797.

DOI: 10.1002/chem.201406345

Google Scholar

[23] P. M. Sudeep, J. Taha-Tijerina, P. M. Ajayan, T. N. Narayanan and M. R. Anantharaman: Nanofluids based on fluorinated graphene oxide for efficient thermal management, RSC Advances, 2014, vol. 4(47), pp.24887-24892.

DOI: 10.1039/c4ra00843j

Google Scholar

[24] S. Boopathi, T. N. Narayanan and S. S. Kumar: Improved heterogeneous electron transfer kinetics of fluorinated graphene derivatives, Nanoscale, 2014, vol. 6(17), pp.10140-10146.

DOI: 10.1039/c4nr02563f

Google Scholar

[25] P. Gong, Z. Wang, Z. Fan, W. Hong, Z. Yang, J. Wang and S. Yang: Synthesis of chemically controllable and electrically tunable graphene films by simultaneously fluorinating and reducing graphene oxide, Carbon, 2014 Jun 30, vol. 72, pp.176-184.

DOI: 10.1016/j.carbon.2014.01.070

Google Scholar

[26] O. Jankovský, P. Šimek, D. Sedmidubský, S. Matějková, Z. Janoušek, F. Šembera, M. Pumera and Z. Sofer: Water-soluble highly fluorinated graphite oxide, RSC Advances, 2014, vol. 4(3), pp.1378-1387.

DOI: 10.1039/c3ra45183f

Google Scholar

[27] X. Yang, X. Jia and X. Ji: Acid induced fluorinated graphene oxide, RSC Advances, 2015, vol. 5(13), pp.9337-9340.

DOI: 10.1039/c4ra13884h

Google Scholar

[28] K. Hou, P. Gong, J. Wang, Z. Yang, L. Ma and S. Yang: Construction of highly ordered fluorinated graphene composite coatings with various fluorine contents for enhanced lubrication performance, Tribology Letters, 2015 Oct 1, vol. 60(1), p.6.

DOI: 10.1007/s11249-015-0586-2

Google Scholar

[29] D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu and J. M.Tour: Improved synthesis of graphene oxide, ACS nano, 2010, vol. 4(8), pp.4806-4814.

DOI: 10.1021/nn1006368

Google Scholar

[30] D. R. Dreyer, S. Park, C. W. Bielawski, et al: The chemistry of graphene oxide[J], Chemical Society Reviews, 2010, vol. 39(1), pp.228-240.

Google Scholar

[31] A. Simon, R. Dronskowski, B. Krebs, et al: The crystal structure of Mn2O7[J], Angewandte Chemie International Edition, 1987, vol. 26(2), pp.139-140.

DOI: 10.1002/anie.198701391

Google Scholar

[32] X. Chen, H. Huang, X. Shu, S. Liu and J. Zhao: Preparation and properties of a novel graphene fluoroxide/polyimide nanocomposite film with a low dielectric constant, RSC Advances, 2017, vol. 7(4), pp.1956-1965.

DOI: 10.1039/c6ra25343a

Google Scholar

[33] A. M. Dimiev and J. M. Tour: Mechanism of graphene oxide formation[J], ACS nano, 2014, vol. 8(3), pp.3060-3068.

DOI: 10.1021/nn500606a

Google Scholar

[34] I. Jung, D. A. Dikin, R. D. Piner and R. S. Ruoff: Tunable electrical conductivity of individual graphene oxide sheets reduced at low, temperatures, Nano Letters, 2008, vol. 8(12), pp.4283-4287.

DOI: 10.1021/nl8019938

Google Scholar