Preparation of Visible Light Responsive Photocatalyst from Titanium Dioxide Nanotubes Modified with Antimony Trisulfide

Article Preview

Abstract:

Titanium dioxide (TiO2) nanotubes with a highly ordered structure were grown by a self-organized anodization process. The photodeposition process was used to improve the visible light response of titanium dioxide (TiO2) nanotubes. The irradiation was carried out with 500 W halogen lamp for 1, 5, 15, 30 and 60 min in the mixed ethanol solution of antimony trisulfide (Sb2S3). The obtained samples were annealed at 250 °C for 30 min. The morphology of the fabricated sample was characterized by a field emission scanning electron microscope (FE-SEM). The phase of samples was determined by X- ray diffractometer (XRD). The weight percentages of a component in the sample were measured by X-ray fluorescence spectrometry (XRF). UV-Vis diffuse reflectance spectra (DRS) of the samples were recorded. All titanium dioxide (TiO2) nanotube samples prepared by anodization process were anatase phase. All composite titanium dioxide (TiO2) nanotube /Sb2S3 samples were a crystalline phase. The percentage of Sb and S increase with increasing of photodeposition’s time. The increasing photodeposition of antimony trisulfide (Sb2S3) on titanium (TiO2) nanotubes from 1 to 60 min lead to increasing of photoabsorption property of the material in the visible region.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

98-103

Citation:

Online since:

December 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. M. Gupta, M. Tripathi: Chinese Sci Bull Vol. 56 (2011), p.1639.

Google Scholar

[2] N. M. Mahmoodi, M. Arami: Photochem. Photobiol. B Biol Vol. 94 (2009), p.20.

Google Scholar

[3] B. Kim, D. Kim, D. Cho, S. Cho: Chemosphere Vol. 52 (2003), p.277.

Google Scholar

[4] H. Yoshida, K. Hirao, J. Nishimoto, K. Shimura, S. Kato, H. Itoh, T. Hattori: J. Phys. Chem. C Vol. 112 (2008), p.5542.

Google Scholar

[5] M. Kitano, K. Funatsu, M. Matsuoka, M. Ueshima, M. Anpo: The Journal of Physical chemistry B Vol. 50 (2006), p.25266.

Google Scholar

[6] N. l. Ermokhina, V. A. Nevinskiy, P. A. Manorik, V. G. llyin, N. N. Shcherbatyuk, D. O. Klymchyuk, A. M. Puziy: Material Letters Vol. 75 (2012), p.68.

DOI: 10.1016/j.matlet.2012.01.133

Google Scholar

[7] J. Yana, S. Fenga, H. Lua: Mat. Sci. Eng. B Vol. 172 (2010), p.114.

Google Scholar

[8] O. Carp, C.L. Huisman, A. Reller, Prog: Solid State Chem Vol.32 (2004), p.33.

Google Scholar

[9] A. Fujishima, T. N . Rao, D. A. Tryk: Journal of Photochemistry and Photobiology C: Photochemistry Reviews Vol. 1 (2000), p.1.

Google Scholar

[10] P. Y. Simons, F. Dachille: Acta Crystallor Vol.23 (1967), p.334.

Google Scholar

[11] Y. Takahasi, N. Kijima, J. Akimoto: Chem Mater Vol. 18 (2006), p.748.

Google Scholar

[12] Y. Ao, Y. Gao, P. Wang, C. Wang, J. Hou, J. Quan: Materials Research Bulletin Vol.49 (2014), p.223.

Google Scholar

[13] S.H. Wang, X.W. Zhou, X.R. Xiao, Y.Y. Fang, Y. Lin: Electrochimica Acta Vol. 116 (2014), p.26.

Google Scholar

[14] A. Fujishima, K. Honda: Nature. Vol.238 (1972), p.27.

Google Scholar

[15] M. Kang; Journal of Molecular Catalysis A: Chemical Vol.197 (2003), p.173.

Google Scholar

[16] C.S. Kim, I.M. Kwon, B.K. Moon, J. H. Jeong, B.C. Choi, J. H. Kim, H. Choi, S. S. Yi, D.H. Yoo, K. S. Hong, J.H. Park, and H. S. Lee: Materials Science and Engineering: C Vol. 27 (2007), p.1343.

DOI: 10.1016/j.msec.2006.12.006

Google Scholar

[17] H. Nishikiori, W. Qian, M.A. El-Sayed: Journal Phys. Chem. C Vol.111 (2007), p.9008.

Google Scholar

[18] X. Meng, X. Wang, M. Zhong, F. Wu, Y. Fang: Journal of Solid State Chemistry Vol. 201 (2013), p.75.

Google Scholar

[19] A.V. Rupa, D. Divakar, T. Sivakumar: Catal. Lett. Vol. 132 (2009), p.259.

Google Scholar

[20] J. Xu, Y. Ao, M. Chen: Journal Alloy Comp. Vol. 484 (2009), p.73.

Google Scholar

[21] M. Grätzel, R.F. Howe: Journal Phys. Chem. Vol. 94 (1990), p.2566.

Google Scholar

[22] P. Lv, W. Fu, H. Yang, H. Sun, Y. Chen, J. Ma, X. Zhou, L. Tian, W. Zhang, M. Li, H. Yao, D. Wu: Cryst. Eng.Comm. Vol. 15 (2013), p.7548.

Google Scholar

[23] W. Fan, S. Jewell, Y. She, M.K.H. Leung: Phys. Chem. Chem. Phys. Vol. 16 (2014), p.676.

Google Scholar

[24] M. Fujii, K. Nagasuna, M. Fujishima, T. Akita, H. Tada: J.Phys. Chem. C Vol. 113 (2009), p.16711.

Google Scholar

[25] X. Wang, J. Zheng, X. Sui, H. Xie, B. Liu, X. Zhao: Dalton Trans. Vol. 42 (2013), p.14726.

Google Scholar

[26] B. Mukherjee, Y.R. Smith, V. Subramanian: Journal Phys. Chem. C Vol. 116 (2012), p.15175.

Google Scholar

[27] F.G. Cai, F. Yang, J.F. Xi, Y.F. Jia, C.H. Cheng, Y. Zhao: Mater. Lett. Vol. 107 (2013), p.39.

Google Scholar

[28] J. Zhong, X. Zhang, Y. Zheng, M. Zheng, M. Wen, S. Wu, J. Gao, X. Gao, J.M. Liu, H. Zhao: ACS Appl. Mater. Interfaces Vol. 5 (2013), p.8345.

Google Scholar

[29] M.Y. Versavel, J.A. Haber: Thin Solid Films Vol. 515 (2007), p.7171.

Google Scholar

[30] C.P. Liu, H.E. Wang, T. W. Ng, Z.H. Chen, W. F. Zhang, C. Yan, Y. B. Tang, I. Bello, L. Martinu, W. J. Zhang, S.K. Jha: Physica Status Solidi B Vol. 249 (2012), p.627.

DOI: 10.1002/pssb.201147393

Google Scholar