Oxidized Cellulose Nanofiber for Hemostatic Materials

Article Preview

Abstract:

In this study, oxidized cellulose nanofiber was prepared from squeeze dried Nata de Coco sheet by the oxidation system of HNO3/H3PO4-NaNO2 at 30 °C for 24 hours. The ratio between HNO3 and H3PO4 was 1:3 v/v and the concentration of NaNO2 was 1.4% w/v. The carboxyl content and %yield of oxidized cellulose nanofiber from Nata de Coco (Nata-OC) was 28.6% and 68.4%, respectively. Then the Nata-OC was treated by several types of bases. Sodium hydroxide (NaOH) or triethanolamine (TEA) treated Nata-OC showed superior in gelation property to the original Nata-OC. The powder of base-treated Nata-OC gave stable Nata-OC aqueous dispersion, which might be applicable for spray-typed materials. The test papers obtained from 10% of base-treated Nata-OC dispersion showed good blood agglutinating property as same as dry sheet of pure Nata-OC. Moreover, the dispersion of base-treated Nata-OC could be coated on the surface of gauze without any additive.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

80-85

Citation:

Online since:

December 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Garves: Holzforschung Vol. 51 (1997), p.526–530.

Google Scholar

[2] V. Kumar and T. Yang: Carbohydr. Polym. Vol. 48 (2002), p.403–412.

Google Scholar

[3] Y. Wu, J. He, W. Cheng, H. Gu et al: Carbohydr. Polym. Vol. 88 (2012), p.1023–1032.

Google Scholar

[4] P. Ma, S. Fu, H. Zhai and C. Daneault: (2012). Bioresour. Technol. Vol. 118 (2012), p.607–610.

Google Scholar

[5] T. Saito, Y. Okita, T. T. Nge and J. Sugiyama: Carbohydr. Polym. Vol. 65 (2006), p.435–440.

Google Scholar

[6] G. Biliuta, L. Fras, M. Drobota, Z. Persin, T. Kreze, K.S. Kleinschek, et. al: Carbohydr. Polym. Vol. 91 (2013), p.502–507.

DOI: 10.1016/j.carbpol.2012.08.047

Google Scholar

[7] C. Ververis, K. Georghiou, N. Christodoulakis, P. Santas and R. Santas: Ind. Crops. Prod. Vol. 19 (2004), p.245–254.

DOI: 10.1016/j.indcrop.2003.10.006

Google Scholar

[8] Y. Kaburagi, M. Ohoyama, Y. Yamaguchi, E. Shindou, et al: Carbon Vol. 55 (2013), p.371–374.

Google Scholar

[9] N. Halib, M.C.I Amin and I. Ahmad: Sains. Malays. Vol. 41 (2012), p.205–211.

Google Scholar

[10] E.L. Hult, S. Yamanaka, et. al: Carbohydr. Polym. Vol. 53 (2003), p.9–14.

Google Scholar

[11] S. Yamanaka, K. Watanabe, N. Kitamura, M. Iguchi, S. Mitsuhashi, Y. Nishi and M. Uryu: J. Mater. Sci. Vol. 24 (1989), p.3141–3145.

DOI: 10.1007/bf01139032

Google Scholar

[12] D. Klemm, D. Schumann, et. al: Prog. Polym. Sci. Vol. 26 (2001), p.1561–1603.

Google Scholar

[13] X. D. Cao, H. Dong, and C. M. Li: Biomacromolecules Vol. 8 (2007), p.899–904.

Google Scholar

[14] K. Das, D. Ray, C. Banerjee, et al: Ind. Eng. Chem. Res. Vol. 49 (2010), p.2775–2782.

Google Scholar

[15] H. Dong, K. E. Strawheckera, J. F. Snydera, J.A. Orlicki, R.S. Reiner, A.W. Rudie, et al: Carbohydr. Polym. Vol. 87 (2012), p.2488–2495.

Google Scholar

[16] H. Deng, X. Zhou, X. Wang, C. Zhang, et al: Carbohydr. Polym. Vol. 80 (2010), p.475–480.

Google Scholar

[17] D. Kotatha and S. Rungrodnimitchai: Int. J. Chem. Eng. (2018) Article ID 2787035, pp.1-12.

Google Scholar

[18] V. Khatri, K. Halász, L. V. Trandafilović, et al: Carbohydr. Polym. Vol. 109 (2014), p.139–147.

Google Scholar

[19] P. Jarujamrus, J. Tian, X. Li, A. Siripinyanond, et. al: Analyst Vol. 137 (2012), p.2205–2210.

Google Scholar

[20] M. Li, J. Tian, M. Al-Tamimi and W. Shen: Angew. Chem. Int. Ed. Engl. Vol. 51 (2012), p.5497–5501.

Google Scholar