[1]
J.L. Provis, J.S.J. van Deventer, editors, Geopolymer: structure, processing, properties and industrial application, Abingdon, Woodhead Publishing, UK, (2009).
Google Scholar
[2]
J. Davidovits, Geopolymers: inorganic polymeric new materials, J. Therm. Anal., 37 (1991) 1633-1656.
Google Scholar
[3]
P. Duxson, A. Fernandez-Jimenez, J.L. Provis, G.C. Lukey, A. Palomo, J.S.J. van Deventer, Geopolymer technology: the current state of the art, J. Mater. Sci., 42 (2007) 917-2933.
DOI: 10.1007/s10853-006-0637-z
Google Scholar
[4]
D. Khale, R. Chaudhary, Mechanism of geopolymerization and factors influencing its development: a review, J. Mater. Sci., 42 (2007) 29-746.
DOI: 10.1007/s10853-006-0401-4
Google Scholar
[5]
Y. Huang, M. Han, The influence of α-Al2O3 addition on microstructure, mechanical and formaldehyde adsorption properties of fly ash-based geopolymer products, J. Haz. Mat., 193 (2011) 91-94.
DOI: 10.1016/j.jhazmat.2011.07.029
Google Scholar
[6]
R.E. Lyon, P.N. Balaguru, A. Foden, U. Sorathia, J. Davidovits, M. Davidovics, Fire-resistant aluminosilicate composites, Fire Mater., 21 (1997) 67-73.
DOI: 10.1002/(sici)1099-1018(199703)21:2<67::aid-fam596>3.0.co;2-n
Google Scholar
[7]
Q. Zhao, B. Nair, T. Rahimian, P.N. Balaguru, Novel geopolymer based composites with enhanced ductility, J. Mater. Sci., 42 (2007) 3131-3137.
DOI: 10.1007/s10853-006-0527-4
Google Scholar
[8]
E. Kemseu, A. Rizzuti, C. Leonelli, D. Perera, Enhanced thermal stability in K2O-metakaolin-based geopolymer concretes by Al2O3 and SiO2 fillers addition, J. Mater. Sci., 45 (2010) 1715-1724.
DOI: 10.1007/s10853-009-4108-1
Google Scholar
[9]
V.F.F. Barbosa, K.J.D. MacKenzie, Thermal behaviour of inorganic geopolymers and composites derived from sodium polysialate, Mater. Res. Bull., 38 (2003) 319-331.
DOI: 10.1016/s0025-5408(02)01022-x
Google Scholar
[10]
Y.S. Zhang, W. Sun, Z. Li, X. Zhou, Geopolymer extruded composites with incorporated fly ash and polyvinyl alcohol short fiber, ACI Mater. J., 106 (2009) 3-10.
DOI: 10.14359/56310
Google Scholar
[11]
C.K. Yip, J.L. Provis, G.C. Lukey, J.S.J. Van Deventer, Carbonate mineral addition to metakaolin-based geopolymers, Cem. Concr. Comp., 30 (2008) 979-985.
DOI: 10.1016/j.cemconcomp.2008.07.004
Google Scholar
[12]
T.S. Lin, D.C. Jia, P.G. He, M.R. Wang, Thermo-mechanical and microstructural characterization of geopolymers with α-Al2O3 particle filler, Int. J. Thermophys., 30 (2009) 1568-1577.
DOI: 10.1007/s10765-009-0636-9
Google Scholar
[13]
W.D.A. Rickard, G.J.G. Gluthb, K. Pistol, In-situ thermo-mechanical testing of fly ash geopolymer concretes made with quartz and expanded clay aggregates, Cem. Concr. Res., 80 (2016) 33-43.
DOI: 10.1016/j.cemconres.2015.11.006
Google Scholar
[14]
P. He, D. Jai, T. Lin, M. Wong, Y. Zhou, Effects of high-temperature heat treatment on the mechanical properties of unidirectional carbon fiber reinforced geopolymer composites, Ceram. Intl., 36 (2010) 1447-1453.
DOI: 10.1016/j.ceramint.2010.02.012
Google Scholar
[15]
P. Alizadeh, V.K. Marghussian, The effect of compositional changes on the crystallization behavior and mechanical properties of diopside wollostanite glass-ceramics in the SiO2-CaO-MgO-(Na2O) system, J. Eur. Ceram. Soc., 20 (2000) 765-773.
DOI: 10.1016/s0955-2219(99)00135-1
Google Scholar
[16]
A.M. Hu, M. Li, D.L. Mao, Growth behavior, morphology and properties of lithium aluminosilicate glass ceramics with different amount of CaO, MgO and TiO2 additive, Ceram. Intl., 34 (2008) 1393-1397.
DOI: 10.1016/j.ceramint.2007.03.032
Google Scholar
[17]
RILEM, FIP manual of lightweight aggregate concrete, 2nd ed., Surry University Press, London, (1983).
Google Scholar
[18]
W. Woodside, Calculation of the thermal conductivity of porous media, Can. J. Phys., 36 (1958) 815-823.
DOI: 10.1139/p58-087
Google Scholar
[19]
M.Y.L. Liu, U.J. Alengaram, M.Z. Jumaat, K.H. Mo, Evaluation of thermal conductivity, mechanical and transport properties of lightweight aggregate foamed geopolymer concrete, Energ. Buildings, 72 (2014) 238-245.
DOI: 10.1016/j.enbuild.2013.12.029
Google Scholar