Effect of ZrO2 and MgO Addition on Structure, Mechanical and Thermal Properties of Metakaolin-Based Geopolymer Composites

Article Preview

Abstract:

This research studies the fabrication and properties of reinforced-geopolymer composites for Green Building. The study comprises of phase formation, microstructure, mechanical and thermal properties. Metakaolin-based geopolymer has been fabricated from calcined kaolin at 750 °C for 6 h. Sodium hydroxide solution with 10 M and sodium silicate solution were used as alkaline activators. The ratio between metakaolin and solution was 1:1.25. Two reinforcements; ZrO2 and MgO at the composition of 0, 1, 3, 5, 7 and 9 wt% were added, then well-mixed together. After casting in acrylic mold, samples were cured at 50 °C for 72 h and then stored in air for 7 and 28 days. Phase formation, microstructure, compressive strength and thermal conductivity were determined by XRD, SEM, universal testing and thermal conductivity measurement, respectively. The results revealed that after stored for 28 days, XRD patterns of geopolymer with and without reinforcements show typical amorphous characteristic. Microstructure observation revealed the dense and heterogenous. The addition both of reinforcements has no effect on the geopolymerization reaction. Compressive strength tends to increase with increasing the amount of MgO content. Moreover, thermal conductivity slightly increased with the amounts of ZrO2 and MgO increase.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

298-303

Citation:

Online since:

April 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.L. Provis, J.S.J. van Deventer, editors, Geopolymer: structure, processing, properties and industrial application, Abingdon, Woodhead Publishing, UK, (2009).

Google Scholar

[2] J. Davidovits, Geopolymers: inorganic polymeric new materials, J. Therm. Anal., 37 (1991) 1633-1656.

Google Scholar

[3] P. Duxson, A. Fernandez-Jimenez, J.L. Provis, G.C. Lukey, A. Palomo, J.S.J. van Deventer, Geopolymer technology: the current state of the art, J. Mater. Sci., 42 (2007) 917-2933.

DOI: 10.1007/s10853-006-0637-z

Google Scholar

[4] D. Khale, R. Chaudhary, Mechanism of geopolymerization and factors influencing its development: a review, J. Mater. Sci., 42 (2007) 29-746.

DOI: 10.1007/s10853-006-0401-4

Google Scholar

[5] Y. Huang, M. Han, The influence of α-Al2O3 addition on microstructure, mechanical and formaldehyde adsorption properties of fly ash-based geopolymer products, J. Haz. Mat., 193 (2011) 91-94.

DOI: 10.1016/j.jhazmat.2011.07.029

Google Scholar

[6] R.E. Lyon, P.N. Balaguru, A. Foden, U. Sorathia, J. Davidovits, M. Davidovics, Fire-resistant aluminosilicate composites, Fire Mater., 21 (1997) 67-73.

DOI: 10.1002/(sici)1099-1018(199703)21:2<67::aid-fam596>3.0.co;2-n

Google Scholar

[7] Q. Zhao, B. Nair, T. Rahimian, P.N. Balaguru, Novel geopolymer based composites with enhanced ductility, J. Mater. Sci., 42 (2007) 3131-3137.

DOI: 10.1007/s10853-006-0527-4

Google Scholar

[8] E. Kemseu, A. Rizzuti, C. Leonelli, D. Perera, Enhanced thermal stability in K2O-metakaolin-based geopolymer concretes by Al2O3 and SiO2 fillers addition, J. Mater. Sci., 45 (2010) 1715-1724.

DOI: 10.1007/s10853-009-4108-1

Google Scholar

[9] V.F.F. Barbosa, K.J.D. MacKenzie, Thermal behaviour of inorganic geopolymers and composites derived from sodium polysialate, Mater. Res. Bull., 38 (2003) 319-331.

DOI: 10.1016/s0025-5408(02)01022-x

Google Scholar

[10] Y.S. Zhang, W. Sun, Z. Li, X. Zhou, Geopolymer extruded composites with incorporated fly ash and polyvinyl alcohol short fiber, ACI Mater. J., 106 (2009) 3-10.

DOI: 10.14359/56310

Google Scholar

[11] C.K. Yip, J.L. Provis, G.C. Lukey, J.S.J. Van Deventer, Carbonate mineral addition to metakaolin-based geopolymers, Cem. Concr. Comp., 30 (2008) 979-985.

DOI: 10.1016/j.cemconcomp.2008.07.004

Google Scholar

[12] T.S. Lin, D.C. Jia, P.G. He, M.R. Wang, Thermo-mechanical and microstructural characterization of geopolymers with α-Al2O3 particle filler, Int. J. Thermophys., 30 (2009) 1568-1577.

DOI: 10.1007/s10765-009-0636-9

Google Scholar

[13] W.D.A. Rickard, G.J.G. Gluthb, K. Pistol, In-situ thermo-mechanical testing of fly ash geopolymer concretes made with quartz and expanded clay aggregates, Cem. Concr. Res., 80 (2016) 33-43.

DOI: 10.1016/j.cemconres.2015.11.006

Google Scholar

[14] P. He, D. Jai, T. Lin, M. Wong, Y. Zhou, Effects of high-temperature heat treatment on the mechanical properties of unidirectional carbon fiber reinforced geopolymer composites, Ceram. Intl., 36 (2010) 1447-1453.

DOI: 10.1016/j.ceramint.2010.02.012

Google Scholar

[15] P. Alizadeh, V.K. Marghussian, The effect of compositional changes on the crystallization behavior and mechanical properties of diopside wollostanite glass-ceramics in the SiO2-CaO-MgO-(Na2O) system, J. Eur. Ceram. Soc., 20 (2000) 765-773.

DOI: 10.1016/s0955-2219(99)00135-1

Google Scholar

[16] A.M. Hu, M. Li, D.L. Mao, Growth behavior, morphology and properties of lithium aluminosilicate glass ceramics with different amount of CaO, MgO and TiO2 additive, Ceram. Intl., 34 (2008) 1393-1397.

DOI: 10.1016/j.ceramint.2007.03.032

Google Scholar

[17] RILEM, FIP manual of lightweight aggregate concrete, 2nd ed., Surry University Press, London, (1983).

Google Scholar

[18] W. Woodside, Calculation of the thermal conductivity of porous media, Can. J. Phys., 36 (1958) 815-823.

DOI: 10.1139/p58-087

Google Scholar

[19] M.Y.L. Liu, U.J. Alengaram, M.Z. Jumaat, K.H. Mo, Evaluation of thermal conductivity, mechanical and transport properties of lightweight aggregate foamed geopolymer concrete, Energ. Buildings, 72 (2014) 238-245.

DOI: 10.1016/j.enbuild.2013.12.029

Google Scholar