[1]
A. Spickenheuer, Zur fertigungsgerechten Auslegung von Faser-Kunststoff-Verbundbauteilen für den extremen Leichtbau auf Basis des variabelaxialen Fadenablageverfahrens Tailored Fiber Placement, Ph.D. thesis, Technische Universität Dresden, Fakultät Maschinenwesen, (2014).
Google Scholar
[2]
K. Gliesche, D. Feltin, Beanspruchungsgerechte textilkonstruktionen für Composite-Bauteile, Technische Textilien/Technical Textiles 38 (1995) 209.
Google Scholar
[3]
M. Hyer, R. Charette, Use of curvilinear fibre format in composite structure design, AIAA Journal 29-6 (1991) 1011–1015.
DOI: 10.2514/3.10697
Google Scholar
[4]
A. Spickenheuer, L. Bittrich, K. Uhlig, E. Richter, G. Heinrich, Variable-axial fiber design – a strategy to utilize material properties for composite parts more efficiently, SETEC 15 - SAMPE Europe. (2014).
Google Scholar
[5]
P. Mattheij, K. Gliesche, D. Feltin, Tailored fiber placement – mechanical properties and applications, Journal of Reinforced Plastics and Composites 17-9 (1998) 774–786.
DOI: 10.1177/073168449801700901
Google Scholar
[6]
E. Richter, A. Spickenheuer , L. Bittrich, K. Uhlig, G. Heinrich, Applications of Variable-axial Fibre Designs in Lightweight Fibre Reinforced Polymers, Materials Science Forum Vols. 825–826 (2015) 757–762.
DOI: 10.4028/www.scientific.net/msf.825-826.757
Google Scholar
[7]
M.P. Bendsoe, O. Sigmund, Topology Optimization – Theory, Methods and Applications, second ed., Springer, Berlin Heidelberg New York Tokyo, (2003).
Google Scholar
[8]
D. Feltin, Entwicklung von textilen Halbzeugen für Faserverbund unter Verwendung von Stickautomaten, Ph.D. thesis, Technische Universität Dresden, Fakultät Maschinenwesen, (1997).
Google Scholar
[9]
I. Karb, S. Carosella, O. Rüger, K. Drechsler, Design and Performance of Composite Structures made by Tailored Fiber Placement Technology, Sampe 2006. (2006).
Google Scholar
[10]
A. Albers, M. Majic, J. Ottnad, A. Spickenheuer, K. Uhlig, G. Heinrich, 3-D topology optimisation in combination with fibre alignment for composite structures manufactured by tailored fibre placement, 8th World Congress on Structural and Multidisciplinary Optimization, Lisbon. (2009).
Google Scholar
[11]
J. Filsinger, T. Lorenz, F. Stadler, S. Utecht, Method and Device for Producing Fiber-reinforced Components Using an Injection Method, German Patent WO 01/68353 A1. (2001).
Google Scholar
[12]
W. Li, J. Krehl, J. W. Gillespie, Jr., D. Heider, M. Endrulat, K. Hochrein, M. G. Dunham, C. J. Dubois, Process and Performance Evaluation of the Vacuum-Assisted Process. Journal of Composite Materials, 38(20) (2004) 1803–1814.
DOI: 10.1177/0021998304044769
Google Scholar
[13]
P. T. Langley, Finite Element Modeling of Tow-Placed Variable-Stiffness Composite Laminates, Mastersthesis, Virginia Polytechnic Institute and State University. (1999).
Google Scholar
[14]
L. Kärger, A. Kling, As-built FE-simulation of advanced fibre placement structures based on manufacturing data, Composite Structures 100 (2013) 104–112.
DOI: 10.1016/j.compstruct.2012.11.024
Google Scholar
[15]
A. Spickenheuer, L. Bittrich, K. Uhlig, E. Richter, U. Gohs, G. Heinrich, A new optimization approach of variable-axial composite parts, 2nd International Symposium on Automated Composites Manufacturing, Montreal, Canada. (2015).
Google Scholar
[16]
H. Schürmann, Konstruieren mit Faser-Kunststoff-Verbunden, second ed., Springer, Berlin Heidelberg New York, (2007).
DOI: 10.1007/978-3-540-72190-1
Google Scholar
[17]
K. Uhlig, M. Tosch, L. Bittrich, A. Leipprand, S. Dey, A. Spickenheuer, G. Heinrich, Meso-scaled finite element analysis of fiber reinforced plastics made by Tailored Fiber Placement, Composite Structures, 143 (2016) 53–62.
DOI: 10.1016/j.compstruct.2016.01.049
Google Scholar