Mechanical Design of Intersection Points of Tailored Fiber Placement Made Carbon Fiber Reinforced Plastic Truss-Like Structures

Article Preview

Abstract:

The presented study emphasizes a favored design for carbon fiber reinforced plastic fiber patterns at intersection points of truss-like structures made with the Tailored Fiber Placement technology. Three different pattern types have been experimentally and numerically analyzed. A straight fiber crossing is the most simple design, but it cannot compete against a fanned out fiber pattern regarding structural stiffness, where fiber spacing increases with increasing crossing distance. A pattern design, where belt and web fiber paths merge, is the most preferred design due to a minimum of material waste, however it exhibits lower stiffness compared to the fanned out pattern.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

452-460

Citation:

Online since:

June 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Spickenheuer, Zur fertigungsgerechten Auslegung von Faser-Kunststoff-Verbundbauteilen für den extremen Leichtbau auf Basis des variabelaxialen Fadenablageverfahrens Tailored Fiber Placement, Ph.D. thesis, Technische Universität Dresden, Fakultät Maschinenwesen, (2014).

Google Scholar

[2] K. Gliesche, D. Feltin, Beanspruchungsgerechte textilkonstruktionen für Composite-Bauteile, Technische Textilien/Technical Textiles 38 (1995) 209.

Google Scholar

[3] M. Hyer, R. Charette, Use of curvilinear fibre format in composite structure design, AIAA Journal 29-6 (1991) 1011–1015.

DOI: 10.2514/3.10697

Google Scholar

[4] A. Spickenheuer, L. Bittrich, K. Uhlig, E. Richter, G. Heinrich, Variable-axial fiber design – a strategy to utilize material properties for composite parts more efficiently, SETEC 15 - SAMPE Europe. (2014).

Google Scholar

[5] P. Mattheij, K. Gliesche, D. Feltin, Tailored fiber placement – mechanical properties and applications, Journal of Reinforced Plastics and Composites 17-9 (1998) 774–786.

DOI: 10.1177/073168449801700901

Google Scholar

[6] E. Richter, A. Spickenheuer , L. Bittrich, K. Uhlig, G. Heinrich, Applications of Variable-axial Fibre Designs in Lightweight Fibre Reinforced Polymers, Materials Science Forum Vols. 825–826 (2015) 757–762.

DOI: 10.4028/www.scientific.net/msf.825-826.757

Google Scholar

[7] M.P. Bendsoe, O. Sigmund, Topology Optimization – Theory, Methods and Applications, second ed., Springer, Berlin Heidelberg New York Tokyo, (2003).

Google Scholar

[8] D. Feltin, Entwicklung von textilen Halbzeugen für Faserverbund unter Verwendung von Stickautomaten, Ph.D. thesis, Technische Universität Dresden, Fakultät Maschinenwesen, (1997).

Google Scholar

[9] I. Karb, S. Carosella, O. Rüger, K. Drechsler, Design and Performance of Composite Structures made by Tailored Fiber Placement Technology, Sampe 2006. (2006).

Google Scholar

[10] A. Albers, M. Majic, J. Ottnad, A. Spickenheuer, K. Uhlig, G. Heinrich, 3-D topology optimisation in combination with fibre alignment for composite structures manufactured by tailored fibre placement, 8th World Congress on Structural and Multidisciplinary Optimization, Lisbon. (2009).

Google Scholar

[11] J. Filsinger, T. Lorenz, F. Stadler, S. Utecht, Method and Device for Producing Fiber-reinforced Components Using an Injection Method, German Patent WO 01/68353 A1. (2001).

Google Scholar

[12] W. Li, J. Krehl, J. W. Gillespie, Jr., D. Heider, M. Endrulat, K. Hochrein, M. G. Dunham, C. J. Dubois, Process and Performance Evaluation of the Vacuum-Assisted Process. Journal of Composite Materials, 38(20) (2004) 1803–1814.

DOI: 10.1177/0021998304044769

Google Scholar

[13] P. T. Langley, Finite Element Modeling of Tow-Placed Variable-Stiffness Composite Laminates, Mastersthesis, Virginia Polytechnic Institute and State University. (1999).

Google Scholar

[14] L. Kärger, A. Kling, As-built FE-simulation of advanced fibre placement structures based on manufacturing data, Composite Structures 100 (2013) 104–112.

DOI: 10.1016/j.compstruct.2012.11.024

Google Scholar

[15] A. Spickenheuer, L. Bittrich, K. Uhlig, E. Richter, U. Gohs, G. Heinrich, A new optimization approach of variable-axial composite parts, 2nd International Symposium on Automated Composites Manufacturing, Montreal, Canada. (2015).

Google Scholar

[16] H. Schürmann, Konstruieren mit Faser-Kunststoff-Verbunden, second ed., Springer, Berlin Heidelberg New York, (2007).

DOI: 10.1007/978-3-540-72190-1

Google Scholar

[17] K. Uhlig, M. Tosch, L. Bittrich, A. Leipprand, S. Dey, A. Spickenheuer, G. Heinrich, Meso-scaled finite element analysis of fiber reinforced plastics made by Tailored Fiber Placement, Composite Structures, 143 (2016) 53–62.

DOI: 10.1016/j.compstruct.2016.01.049

Google Scholar