Electrochemical Degradation of p-Nitrophenol on Cu Nanowires and Nanocubes

Article Preview

Abstract:

{100}-faceted copper nanostructures with different morphology of nanowires and nanocubes have been prepared by one-pot method. The electroactivity of Cu nanowires and nanocubes was evaluated by degradation of p-nitrophenol. As-prepared copper nanowires exhibit higher catalytic activity for p-nitrophenol degradation than copper nanocubes, and outperform most of Cu catalysts reported in literature. Electrochemical reductive reaction of p-nitrophenol is shown to be kinetically first-order.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

76-82

Citation:

Online since:

July 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Habas SE, Lee H, Radmilovic V, et al. Shaping binary metal nanocrystals through epitaxial seeded growth.[J]. Nat.Mater,2007, 6(9):692-697.

DOI: 10.1038/nmat1957

Google Scholar

[2] Xia Y, Ouyang Z, Cooks R G. Peptide fragmentation assisted by surfaces treated with a low-temperature plasma.[J]. Angew. Chem. Int. Ed. 2010, 47(45):8646-8649.

DOI: 10.1002/anie.200803477

Google Scholar

[3] Ranu B, Dey R, Chatterjee T, et al. Copper nanoparticle-catalyzed carbon-carbon and carbon-heteroatom bond formation with a greener perspective[J]. Chemsuschem, 2012, 5(1):22-44.

DOI: 10.1002/cssc.201100348

Google Scholar

[4] Kumar S, Saini D, Lotey G S , et al. Electrochemical synthesis of copper nanowires in anodic alumina membrane and their impedance analysis[J]. Superlattices & Microstructures, 2011, 50(6):698-702.

DOI: 10.1016/j.spmi.2011.09.011

Google Scholar

[5] Sneed B T, Kuo C H, Brodsky C N, et al. Iodide-mediated control of rhodium epitaxial growth on well-defined noble metal nanocrystals: synthesis, characterization, and structure-dependent catalytic properties[J]. J. Am. Chem. Soc, 2012, 134(44):18417-18426.

DOI: 10.1021/ja308030h

Google Scholar

[6] Wu Yuen, et al. Syntheses of Water-Soluble Octahedral, Truncated Octahedral, and Cubic Pt–Ni Nanocrystals and Their Structure–Activity Study in Model Hydrogenation Reactions., J. Am. Chem. Soc, 134.21(2012):8975-8981.

DOI: 10.1021/ja302606d

Google Scholar

[7] GaoT, Meng G, Wang Y, et al. Electrochemical synthesis of copper nanowires[J]. Journal of Physics-Condensed Matter, 2002, 14(3):355-363.

Google Scholar

[8] Zhang D, Wang R, Wen M, et al. Synthesisof Ultralong Copper Nanowires for High-Perfo-rmance Transparent Electrodes[J].J. Am. Chem. Soc, 2012, 134(35):14283-6.

DOI: 10.1021/ja3050184

Google Scholar

[9] Gan Lin Hwang,Kuo Chu Hwang, YeongTarng Shieh,etal. Preparation of Carbon Nanotube Encapsulated Copper Nanowires and Their Use as a Reinforcement for Y−Ba−Cu−O Superconductors[J]. Chemistry of Materials, 2003, 15(6):1353-1357.

DOI: 10.1021/cm020747j

Google Scholar

[10] Choi H, Park S H. Seedless growth of free-standing copper nanowires by chemical vapor deposition.[J]. J. Am. Chem. Soc, 2004, 126(20):6248-9.

DOI: 10.1021/ja049217+

Google Scholar

[11] Rathmell A R, Wiley B J. The synthesis and coating of long, thin copper nanowires to make flexible, transparent conducting films on plastic substrates.[J].Adv.Mater.,2011, 23(41):4798-4803.

DOI: 10.1002/adma.201102284

Google Scholar

[12] Molares M E T, Buschmann V, Dobrev D, et al. ChemInform Abstract: Single-Crystalline Copper Nanowires Produced by Electrochemical Deposition in Polymeric Ion Track Membranes[J]. Cheminform, 2010, 32(18):510-523.

DOI: 10.1002/chin.200118218

Google Scholar

[13] Pang Y T, Meng G W, Zhang Y, et al. Copper nanowire arrays for infrared polarizer[J]. Appl. Phys. A , 2003, 76(4):533-536.

Google Scholar

[14] Guo H, Lin N, Chen Y, et al. Copper nanowires as fully transparent conductive electrodes.[J]. Sci Rep, 2013, 3(7):2323.

Google Scholar

[15] Choi W Y, Kang J W, Hwang H J. Structures of ultrathin copper nanowires encapsulated in carbon nanotubes[J]. Phys. Rev. B, 2003, 68(19):193405.

DOI: 10.1103/physrevb.68.193405

Google Scholar

[16] Huang X, Chen Y, Chiu C Y, et al. A versatile strategy to the selective synthesis of Cu nanocrystals and the in situ conversion to CuRu nanotubes[J].Nanoscale, 2013, 5(14):6284-6290.

DOI: 10.1039/c3nr01290e

Google Scholar

[17] Gelves G, Lin B, Sundararaj U, et al. Low Electrical Percolation Threshold of Silver and Copper Nanowires in Polystyrene Composites[J]. Adv. Funct. Mater., 2010, 16(18):2423-2430.

DOI: 10.1002/adfm.200600336

Google Scholar

[18] Zhang Y, Su L, Dan M, et al. Ultrasensitive and selective non-enzymatic glucose detection using copper nanowires[J]. Biosensors & Bioelectronics, 2012, 31(1):426-432.

DOI: 10.1016/j.bios.2011.11.006

Google Scholar

[19] Setlur A A, Lauerhaas J M, Dai J Y, et al. A method for synthesizing large quantities of carbon nanotubes and encapsulated copper nanowires[J]. Appl. Phys. L, 1996, 69(3):345.

DOI: 10.1063/1.118055

Google Scholar

[20] Sivakumar M, Tatake P A, Pandit A B. Kinetics of p-Nitrophenol degradation: Effect of Reaction conditions and Cavitational parameters for a Multiple Frequency system[J]. Chem. Eng. J, 2002, 85(2):327-338.

DOI: 10.1016/s1385-8947(01)00179-6

Google Scholar

[21] Enculescu I, Siwy Z, Dobrev D, et al. Copper nanowires electrodeposited in etched single-ion track templates[J]. Appl. Phys. A, 2003, 77(6):751-755.

DOI: 10.1007/s00339-003-2216-3

Google Scholar

[22] Roberts FS et al. Electroreduction of Carbon Monoxide Over a Copper Nanocube Catalyst: Surface Structure and pH Dependence on Selectivity[J].Chemcatchem,2016, 8(6):1119-1124.

DOI: 10.1002/cctc.201501189

Google Scholar

[23] Kong C, Sun S, Jie Z, etal. Nanocube-aggregated cauliflower-like copper hierarchical architectures: synthesis, growth mechanism and electrocatalytic activity[J]. Crystengcomm, 2012, 14(18): 5737-5740.

DOI: 10.1039/c2ce25709b

Google Scholar

[24] Gao D, Zegkinoglou I, Divins N J, et al. Plasma-Activated Copper Nanocube Catalysts for Efficient Carbon Dioxide Electroreduction to Hydrocarbons and Alcohols[J]. Acs Nano, 2017, 11(5):4825-4831.

DOI: 10.1021/acsnano.7b01257

Google Scholar

[25] Peng L, Zhao M. Silver nanoparticle supported on halloysite nanotubes catalyzed reduction of 4-nitrophenol (4-NP)[J]. Appl.Surf.Sci, 2009, 255(7):3989-3993.

DOI: 10.1016/j.apsusc.2008.10.094

Google Scholar

[26] Chiou C H, Wu C Y, Juang R S. Influence of operating parameters on photocatalytic degradation of phenol in UV/TiO2 process[J]. Chemical Engineering Journal, 2008, 139(2): 322-329.

DOI: 10.1016/j.cej.2007.08.002

Google Scholar

[27] Khatamian M, Divband B, Jodaei A. Degradation of 4-nitrophenol (4-NP) using ZnO nanoparticles supported on zeolites and modeling of experimental results by artificial neural networks[J]. Mater Chem& Phys, 2012, 134(1):31-37.

DOI: 10.1016/j.matchemphys.2012.01.091

Google Scholar

[28] Wang W, Yuan Q, Chi Y, et al. Preparation and Photocatalysis of Mesoporous TiO2 Nanofibers via an Electrospinning Technique[J]. Chemical Research in Chinese Universities, 2012, 28(4):727-731.

Google Scholar

[29] Wen R M, Deng S Q. Research on Degradation 4-CP,4-NP and Rh B in Water by 185 nm UV irradiation[J].Photographic Science & Photochemistry, 2007, 25(1):1-11.

Google Scholar

[30] Chen H, Fan X, Ma J, et al. Green Route for Microwave-Assisted Preparation of AuAg-All-oy-Decorated Graphene Hybrids with Superior4-NP Reduction Catalytic Activity[J]. Industrial & Engineering Chemistry Research, 2014, 53(46):17976-17980.

DOI: 10.1021/ie503251h

Google Scholar

[31] Gandhimathi R, Dhanasekaran R. Third order nonlinear studies and other characterization of 4-nitrophenol (4-NP) single crystals[J]. Iop Conference, 2013, 43:012004.

DOI: 10.1088/1757-899x/43/1/012004

Google Scholar

[32] Haider S, Kamal T, Khan S B, et al. Natural polymers supported copper nanoparticles for pollutants degradation[J]. Appl. Phys. A , 2016, 387:1154-1161.

DOI: 10.1016/j.apsusc.2016.06.133

Google Scholar

[33] Batool S S, Hassan S, Imran Z, et al. Comparison of different phases of bismuth silicate nanofibers for photodegradation of organic dyes[J]. International Journal of Environmental Science & Technology, 2016, 13(6):1497-1504.

DOI: 10.1007/s13762-016-0987-2

Google Scholar

[34] Mele G, Ciccarella G, Vasapollo G, et al. Photocatalytic degradation of 4-nitrophenol in aqueous suspension by using polycrystalline TiOsamples impregnated with Cu(II)-phthalocyanin[J]. Appl. Phys. A, 2002, 38(4): 309-319.

DOI: 10.1016/s0926-3373(02)00060-7

Google Scholar

[35] Zhang Xiaorong, Qianhou Kui, Xue Jun, et al. Preliminary study on electrochemical catalysis of carbon-coated copper nanoparticles [J]. Journal of Wuhan University of Engineering, 2011, 33(6).

Google Scholar

[36] Jiao Yongli, Liu Zhaona, Wu Deli, et al. Study on electrochemical reduction of p-nitrophenol on copper electrode[J]. Water purification technology, 2009, 28 (2): 50-52.

Google Scholar