Controlled Hydrothermal Synthesis of K2Ti6O13 Nanowires and their Photo-Electronic Response

Article Preview

Abstract:

A hydrothermal method using tetrabutyl titanate and KOH as reactants for synthesis of K2Ti6O13 nanowires was developed, obtaining nanowires with a uniform diameter around 10nm. It is shown that the hydrothermal temperature and the KOH concentration have little influence in tuning the growth of K2Ti6O13 nanowires. By changing the time for hydrothermal reaction, the length of K2Ti6O13 nanowires can be controlled from several dozen of nanometers to several hundreds of nanometers. The as-prepared K2Ti6O13 nanowires exhibit a wide and strong absorption band in the ultraviolet range (around 200~300 nm), and stable photocurrent of 0.5μA/cm2, which might suggest potential applications in solar cell and water splitting.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

70-75

Citation:

Online since:

July 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Sun Y, Mayers B, Herricks T, et al. Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence[J]. Nano letters, 2003, 3(7): 955-960.

DOI: 10.1021/nl034312m

Google Scholar

[2] Park J, Zheng H, Jun Y, et al. Hetero-epitaxial anion exchange yields single-crystalline hollow nanoparticles[J]. Journal of the American Chemical Society, 2009, 131(39): 13943-13945.

DOI: 10.1021/ja905732q

Google Scholar

[3] Li L, Hu F, Xu D, et al. Metal ion redox potential plays an important role in high-yield synthesis of monodisperse silver nanoparticles[J]. Chemical Communications, 2012, 48(39): 4728-4730.

DOI: 10.1039/c2cc18152e

Google Scholar

[4] Tan C, Zhang H. Epitaxial growth of hetero-nanostructures based on ultrathin two-dimensional nanosheets[J]. Journal of the American Chemical Society, 2015, 137(38): 12162-12174.

DOI: 10.1021/jacs.5b03590

Google Scholar

[5] Li L, Chen Z, Hu Y, et al. Single-layer single-crystalline SnSe nanosheets[J]. Journal of the American Chemical Society, 2013, 135(4): 1213-1216.

DOI: 10.1021/ja3108017

Google Scholar

[6] Fan Z, Luo Z, Huang X, et al. Synthesis of 4H/fcc noble multimetallic nanoribbons for electrocatalytic hydrogen evolution reaction[J]. Journal of the American Chemical Society, 2016, 138(4): 1414-1419.

DOI: 10.1021/jacs.5b12715

Google Scholar

[7] Ma Y, Li W, Zeng J, et al. Synthesis of small silver nanocubes in a hydrophobic solvent by introducing oxidative etching with Fe (III) species[J]. Journal of Materials Chemistry, 2010, 20(18): 3586-3589.

DOI: 10.1039/c0jm00187b

Google Scholar

[8] Pradhan N, Reifsnyder D, Xie R, et al. Surface ligand dynamics in growth of nanocrystals[J]. Journal of the American Chemical Society, 2007, 129(30): 9500-9509.

DOI: 10.1021/ja0725089

Google Scholar

[9] Peng X, Wickham J, Alivisatos A P. Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: focusing, of size distributions[J]. Journal of the American Chemical Society, 1998, 120(21): 5343-5344.

DOI: 10.1021/ja9805425

Google Scholar

[10] Wang W, Goebl J, He L, et al. Epitaxial growth of shape-controlled Bi2Te3− Te heterogeneous nanostructures[J]. Journal of the American Chemical Society, 2010, 132(48): 17316-17324.

DOI: 10.1021/ja108186w

Google Scholar

[11] Jin M, He G, Zhang H, et al. Shape‐controlled synthesis of copper nanocrystals in an aqueous solution with glucose as a reducing agent and hexadecylamine as a capping agent[J]. Angewandte Chemie International Edition, 2011, 50(45): 10560-10564.

DOI: 10.1002/anie.201105539

Google Scholar

[12] Xiong Y, Xia Y. Shape‐controlled synthesis of metal nanostructures: the case of palladium[J]. Advanced Materials, 2007, 19(20): 3385-3391.

DOI: 10.1002/adma.200701301

Google Scholar

[13] Li L, Hu F, Xu D, et al. Metal ion redox potential plays an important role in high-yield synthesis of monodisperse silver nanoparticles[J]. Chemical Communications, 2012, 48(39): 4728-4730.

DOI: 10.1039/c2cc18152e

Google Scholar

[14] Sun Y, Yin Y, Mayers B T, et al. Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly (vinyl pyrrolidone)[J]. Chemistry of Materials, 2002, 14(11): 4736-4745.

DOI: 10.1021/cm020587b

Google Scholar

[15] Wu Y, Wang D, Li Y. Nanocrystals from solutions: catalysts[J]. Chemical Society Reviews, 2014, 43(7): 2112-2124.

Google Scholar

[16] Huang L, Zheng J, Huang L, et al. Controlled synthesis and flexible self-assembly of monodisperse Au@ semiconductor core/shell hetero-nanocrystals into diverse superstructures[J]. Chemistry of Materials, 2017, 29(5): 2355-2363.

DOI: 10.1021/acs.chemmater.7b00046.s001

Google Scholar

[17] Shen S, Wang Q. Rational tuning the optical properties of metal sulfide nanocrystals and their applications[J]. Chemistry of Materials, 2012, 25(8): 1166-1178.

DOI: 10.1021/cm302482d

Google Scholar

[18] Pradhan N, Peng X. Efficient and color-tunable Mn-doped ZnSe nanocrystal emitters: control of optical performance via greener synthetic chemistry[J]. Journal of the American Chemical Society, 2007, 129(11): 3339-3347.

DOI: 10.1021/ja068360v

Google Scholar

[19] Peng Y, Wang L, Luo Q, et al. Molecular-level insight into how hydroxyl groups boost catalytic activity in CO2 hydrogenation into methanol[J]. Chem, 2018, 4(3): 613-625.

DOI: 10.1016/j.chempr.2018.01.019

Google Scholar

[20] Kang Y, Yang P, Markovic N M, et al. Shaping electrocatalysis through tailored nanomaterials[J]. Nano Today, 2016, 11(5): 587-600.

DOI: 10.1016/j.nantod.2016.08.008

Google Scholar

[21] Rycenga M, Cobley C M, Zeng J, et al. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications[J]. Chemical reviews, 2011, 111(6): 3669-3712.

DOI: 10.1021/cr100275d

Google Scholar

[22] Ji M, Xu M, Zhang W, et al. Structurally Well‐Defined Au@ Cu2− xS Core–Shell Nanocrystals for Improved Cancer Treatment Based on Enhanced Photothermal Efficiency[J]. Advanced Materials, 2016, 28(16): 3094-3101.

DOI: 10.1002/adma.201503201

Google Scholar

[23] Liu C, Dasgupta N P, Yang P. Semiconductor nanowires for artificial photosynthesis[J]. Chemistry of Materials, 2013, 26(1): 415-422.

DOI: 10.1021/cm4023198

Google Scholar

[24] Du G H, Chen Q, Han P D, et al. Potassium titanate nanowires: Structure, growth, and optical properties[J]. Physical Review B, 2003, 67(3): 035323.

Google Scholar

[25] Wang B L, Chen Q, Wang R H, et al. Synthesis and characterization of K2Ti6O13 nanowires[J]. Chemical physics letters, 2003, 376(5-6): 726-731.

DOI: 10.1016/s0009-2614(03)01068-6

Google Scholar

[26] Yoshida H, Takeuchi M, Sato M, et al. Potassium hexatitanate photocatalysts prepared by a flux method for water splitting[J]. Catalysis Today, 2014, 232: 158-164.

DOI: 10.1016/j.cattod.2013.10.046

Google Scholar

[27] Bogicevic C, Thorner G, Karolak F, et al. Morphogenesis mechanisms in the solvothermal synthesis of BaTiO3 from titanate nanorods and nanotubes[J]. Nanoscale, 2015, 7(8): 3594-3603.

DOI: 10.1039/c4nr06266c

Google Scholar

[28] Chao C, Ren Z, Yin S, et al. Hydrothermal synthesis of ferroelectric PbTiO3 nanoparticles with dominant {001} facets by titanate nanostructure[J]. CrystEngComm, 2013, 15(39): 8036-8040.

DOI: 10.1039/c3ce41248b

Google Scholar

[29] Ogura S, Kohno M, Sato K, et al. Photocatalytic properties of M2Ti6O13 (M= Na, K, Rb, Cs) with rectangular tunnel and layer structures: Behavior of a surface radical produced by UV irradiation and photocatalytic activity for water decomposition[J]. Physical Chemistry Chemical Physics, 1999, 1(1): 179-183.

DOI: 10.1039/a806734a

Google Scholar