[1]
L. Smith, N. Vasanthan, Effect of clay on melt crystallization, crystallization kinetics and spherulitic morphology of poly (trimethylene terephthalate), Thermochim. Acta. 617(2015)152-162.
DOI: 10.1016/j.tca.2015.08.035
Google Scholar
[2]
C. Sarathchandran, M. Czajka, C.H. Chan, R.A. Shanks, S. Thomas, Interfacial interactions of thermally reduced graphene in poly(trimethylene terephthalate)-epoxy resin based composites, Polymer. 106(2016)140-151.
DOI: 10.1016/j.polymer.2016.10.035
Google Scholar
[3]
F. Li, Y.B. Gao, W. Jiang, Design of high impact thermal plastic polymer composites with balanced toughness and rigidity: Toughening with one phase modifier, Polymer. 170(2019)101-106.
DOI: 10.1016/j.polymer.2019.03.004
Google Scholar
[4]
C. Hu, J.D. Xiao, X.D. Mao, L.L. Song, S.J. Liu, Toughening mechanisms of epoxy resin using aminated metal-organic frameworks as additive, Mater. Lett. 240(2019)113-116.
DOI: 10.1016/j.matlet.2018.12.123
Google Scholar
[5]
G.S. Martins, L.M. Pereira, R.L. Oréfice, Toughening brittle polymers with shape memory polymers, Polymer. 135(2018)30-38.
DOI: 10.1016/j.polymer.2017.12.017
Google Scholar
[6]
C. Valles, I.A. Kinloch, R.J. Young, N.R. Wilson, J.P. Rourke, Graphene oxide and basewashed graphene oxide as reinforcements in PMMA nanocomposites, Compos. Sci. Technol. 88(2013)158-164.
DOI: 10.1016/j.compscitech.2013.08.030
Google Scholar
[7]
A.J. Duguay, J.W. Nader, A. Kizitas, D.J. Gardner, H.J. Dagher, Exfoliated graphite nanoplatelet-filled impact modified polypropylene nanocomposites: influence of particle diameter, filler loading, and coupling agent on the mechanical properties, Appl. Nanosci. 4(2014)279-291.
DOI: 10.1007/s13204-013-0204-2
Google Scholar
[8]
J.F. Wang, X.X. Jin, C.H. Li, W.J. Wang, H. Wu, S.Y. Guo, Graphene and graphene derivatrives toughing polymers: toward high toughness and strength, Chem. Engin. J. 370(2019)831-854.
DOI: 10.1016/j.cej.2019.03.229
Google Scholar
[9]
F.Z. Wang, L.T. Drzal, Y. Qin, Z.X. Huang, Enhancement of fracture toughness, mechanical and thermal properties of rubber/epoxy composites by incorporation of graphene nanoplatelets, Compos. part A. 87(2016)10-22.
DOI: 10.1016/j.compositesa.2016.04.009
Google Scholar
[10]
G.S. Jung, Z. Qin, M.J. Buehler, Molecular mechanics of polycrystalline graphene with enhanced fracture toughness, Extreme Mech. Lett. 2(2015)52-59.
DOI: 10.1016/j.eml.2015.01.007
Google Scholar
[11]
X.R. Zhao, Y. Li, W. Chen, S. Li, Y. Zhao, S.Y. Du, Improved fracture toughness of epoxy resin reinforced with polyamide 6/graphene oxide nanocomposites prepared via in situ polymerization, Composit. Sci. and Techn. 171(2019)180-189.
DOI: 10.1016/j.compscitech.2018.12.023
Google Scholar
[12]
A. A rgoud, T. Fonti, S. Ceccia, S. Potta, Morphologies in polyamide 6/high density polyethylene blends with high amounts of reactive compatibilizer, Eur. Polym. J., 50 (2014) 177-189.
DOI: 10.1016/j.eurpolymj.2013.10.026
Google Scholar
[13]
W.J. Song, H.Z. Liu, F. Chen, and J.W. Zhang, Effects of ionomer characteristics on reactions and properties of poly(lactic acid) ternary blends prepared by reactive blending, Polymer, 53 (2012) 2476-2482.
DOI: 10.1016/j.polymer.2012.03.050
Google Scholar