Toughened Poly(Trimethylene Terephthalate) by Melt Compounding with Functionalized Graphene Oxide Nanocomposites

Article Preview

Abstract:

Functionalized graphene oxide (fGO) nanoplates were added to the Poly (trimethylene terephthalate) (PTT) matrix by melt mixing. The mechanical property and deformation mechanism of PTT/fGO nanocomposites were studied. Addition of a small amount of fGO in PTT improves remarkably tensile properties. The elongation break of PTT/fGO increased with addition of fGO in PTT matrix owing to preferential interaction between groups of fGO and PTT matrix.. The fracture mechanism is identified by scanning electron microscopic (SEM) ananlysis of the fracture surfaces. FGO in PTT/fGO nanocomposites were homogenously dispersed in PTT matrix, indicating that the function of fGO improve the compatibility between PTT and fGO.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

64-69

Citation:

Online since:

July 2019

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Smith, N. Vasanthan, Effect of clay on melt crystallization, crystallization kinetics and spherulitic morphology of poly (trimethylene terephthalate), Thermochim. Acta. 617(2015)152-162.

DOI: 10.1016/j.tca.2015.08.035

Google Scholar

[2] C. Sarathchandran, M. Czajka, C.H. Chan, R.A. Shanks, S. Thomas, Interfacial interactions of thermally reduced graphene in poly(trimethylene terephthalate)-epoxy resin based composites, Polymer. 106(2016)140-151.

DOI: 10.1016/j.polymer.2016.10.035

Google Scholar

[3] F. Li, Y.B. Gao, W. Jiang, Design of high impact thermal plastic polymer composites with balanced toughness and rigidity: Toughening with one phase modifier, Polymer. 170(2019)101-106.

DOI: 10.1016/j.polymer.2019.03.004

Google Scholar

[4] C. Hu, J.D. Xiao, X.D. Mao, L.L. Song, S.J. Liu, Toughening mechanisms of epoxy resin using aminated metal-organic frameworks as additive, Mater. Lett. 240(2019)113-116.

DOI: 10.1016/j.matlet.2018.12.123

Google Scholar

[5] G.S. Martins, L.M. Pereira, R.L. Oréfice, Toughening brittle polymers with shape memory polymers, Polymer. 135(2018)30-38.

DOI: 10.1016/j.polymer.2017.12.017

Google Scholar

[6] C. Valles, I.A. Kinloch, R.J. Young, N.R. Wilson, J.P. Rourke, Graphene oxide and basewashed graphene oxide as reinforcements in PMMA nanocomposites, Compos. Sci. Technol. 88(2013)158-164.

DOI: 10.1016/j.compscitech.2013.08.030

Google Scholar

[7] A.J. Duguay, J.W. Nader, A. Kizitas, D.J. Gardner, H.J. Dagher, Exfoliated graphite nanoplatelet-filled impact modified polypropylene nanocomposites: influence of particle diameter, filler loading, and coupling agent on the mechanical properties, Appl. Nanosci. 4(2014)279-291.

DOI: 10.1007/s13204-013-0204-2

Google Scholar

[8] J.F. Wang, X.X. Jin, C.H. Li, W.J. Wang, H. Wu, S.Y. Guo, Graphene and graphene derivatrives toughing polymers: toward high toughness and strength, Chem. Engin. J. 370(2019)831-854.

DOI: 10.1016/j.cej.2019.03.229

Google Scholar

[9] F.Z. Wang, L.T. Drzal, Y. Qin, Z.X. Huang, Enhancement of fracture toughness, mechanical and thermal properties of rubber/epoxy composites by incorporation of graphene nanoplatelets, Compos. part A. 87(2016)10-22.

DOI: 10.1016/j.compositesa.2016.04.009

Google Scholar

[10] G.S. Jung, Z. Qin, M.J. Buehler, Molecular mechanics of polycrystalline graphene with enhanced fracture toughness, Extreme Mech. Lett. 2(2015)52-59.

DOI: 10.1016/j.eml.2015.01.007

Google Scholar

[11] X.R. Zhao, Y. Li, W. Chen, S. Li, Y. Zhao, S.Y. Du, Improved fracture toughness of epoxy resin reinforced with polyamide 6/graphene oxide nanocomposites prepared via in situ polymerization, Composit. Sci. and Techn. 171(2019)180-189.

DOI: 10.1016/j.compscitech.2018.12.023

Google Scholar

[12] A. A rgoud, T. Fonti, S. Ceccia, S. Potta, Morphologies in polyamide 6/high density polyethylene blends with high amounts of reactive compatibilizer, Eur. Polym. J., 50 (2014) 177-189.

DOI: 10.1016/j.eurpolymj.2013.10.026

Google Scholar

[13] W.J. Song, H.Z. Liu, F. Chen, and J.W. Zhang, Effects of ionomer characteristics on reactions and properties of poly(lactic acid) ternary blends prepared by reactive blending, Polymer, 53 (2012) 2476-2482.

DOI: 10.1016/j.polymer.2012.03.050

Google Scholar