Highly Increased Flow-Induced Voltage Generation on Hybrid Membranes of Monolayer Graphene and Single-Walled Carbon Nanotubes

Article Preview

Abstract:

We investigate the hybrid structure composed of single-walled carbon nanotubes (SWCNTs) and monolayer graphene to highly increase flow-induced voltage generation by an ionic droplet on these hybrid carbon membranes. These properties were characterized by Raman spectra, a field-emission-scanning probe, and optical microscope. We demonstrated flow-induced voltage generation on the hybrid structure at various ion concentrations of NaCl. The generated voltage for the membrane of SWCNTs/graphene/SWCNTs was 8.636 and 4.92 times larger than for the SWCNTs, and graphene/SWCNTs membranes, respectively, based on the highly increased electron dragging mechanism.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

53-57

Citation:

Online since:

July 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Jung, J. Y. Woo, S. H. Lee, D. Kim, S. Kim, C. S. Han, Evaluation of the individualization state in single-walled carbon nanotube solutions using absorption, raman and photoluminiescence spectroscopy, Meas. Sci. Technol. 23 (2012) 125501.

DOI: 10.1088/0957-0233/23/12/125501

Google Scholar

[2] D. H. Shin, H. C. Shim, J. W. Song, S. Kim, C. S. Han, Conductivity of films made from single-walled carbon nanotubes in terms of bundle diameter, Scr. Mater. 60 (2009) 607-610.

DOI: 10.1016/j.scriptamat.2008.12.019

Google Scholar

[3] J. Kim, J. Lee, S. Kim, W. Jung, Highly increased flow-induced power generation on plasmonically carbonized single-walled carbon nanotube, ACS Appl. Mater. Interfaces, 8 (2016) 29877-29882.

DOI: 10.1021/acsami.6b10965

Google Scholar

[4] J. Kim, G. G. Kim, S. Kim, W. Jung, Highly enhanced electromechanical stability of large-area graphene with increased interfacial adhesion energy by Electrothermal-direct transfer for transparent electrodes, ACS Appl. Mater. Interfaces 8 (2016) 23396-23403.

DOI: 10.1021/acsami.6b07772

Google Scholar

[5] P. Avouris, Molecular electronics with carbon nanotubes, Acc. Chem. Res. 35 (2002) 1026-1034.

DOI: 10.1021/ar010152e

Google Scholar

[6] S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge, R. E. Smalley, R. B. Weisman, Structure-assigned optical spectra of single-walled carbon nanotubes, 298 (2002) 2361-2366.

DOI: 10.1126/science.1078727

Google Scholar

[7] S. Roche, Carbon nanotubes: Exceptional mechanical and electronic properties, Ann. Chim. 25 (200) 529-532.

Google Scholar

[8] J. Yin, X. Li, J. Yu, Z. Zhang, J. Zhou, W. Guo, Generating electricity by moving a droplet of ionic liquid along graphene, Nat. Nanotechnol., 9 (2014) 378-383.

DOI: 10.1038/nnano.2014.56

Google Scholar

[9] S. Ghosh, A. K. Sood, N. Kumar, Carbon nanotube flow sensors, Science 299 (2003) 1042-1044.

DOI: 10.1126/science.1079080

Google Scholar

[10] Y. Zhao, L. Song, K. Deng, Z. Liu, Z. Zhang, Y. Yang, C. Wang, H. Yang, A. Jin, Q. Luo, C. Gu, S. Xie, L. Sun, Individual water-filled single-walled carbon nanotubes as hydroelectric power converters, Adv. Mater. 20 (2008) 1772-1776.

DOI: 10.1002/adma.200702956

Google Scholar

[11] J. Liu, L. Dai, J. W. Baur, Multiwalled carbon nanotubes for flow-induced voltage generation, J. Appl. Phys. 101 (2007) 064312.

DOI: 10.1063/1.2710776

Google Scholar

[12] P. Kral, M. Shapiro, Nanotube electron drag in flowing liquids, Phys. Rev. Lett. 86 (2001) 131.

DOI: 10.1103/physrevlett.86.131

Google Scholar

[13] Y. He, J. Lau, t. Yang, X. Li, X. Zang, X. Li, M. Zhu, Q. Chen, M. Zhong, H. Zhu, Galvanism of continuous ionic liquid flow over graphene grids, Appl. Phys. Lett. 107 (2015) 081605.

DOI: 10.1063/1.4929745

Google Scholar

[14] M. Kruger, M. R. Buitelaar, T. Nussbaumer, C. Schonenberger, L. Forro, The electrochemical carbon nanotube field-effect transistor, Appl. Phys. Lett. 78 (2001) 1291.

DOI: 10.1063/1.1350427

Google Scholar

[15] J. Lao, Y. He, X. Li, F. Wu, T. Yang, M. Zhu, Y. Zhang, P. Sun, Z. Zhen, B. Cheng, H. Zhu, Flow-induced voltage generation in graphene network., Nano Res. 8 (2015) 2467-2473.

DOI: 10.1007/s12274-015-0754-6

Google Scholar

[16] S. H. Lee, Y. Jung, S. Kim, C. S. Han, Flow-induced voltage generation in non-ionic liquids over monolayer graphene, Appl. Phys. Lett. 102 (2013) 063116.

DOI: 10.1063/1.4792702

Google Scholar

[17] S. H. Lee, Y. B. A. Kang, W. Jung, Y. Jung, S. Kim, H. M. Noh, Flow-induced voltage generation over monolayer graphene in the presence of herringbone grooves, Nanoscale Res. Lett. 8 (2013) 487.

DOI: 10.1186/1556-276x-8-487

Google Scholar

[18] P. Dhiman, F. Yavari, X. Mi, H. Gullapalli, Y. Shi, P. M. Ajayan, N. Koratkar, Harvesting energy from water flow over graphene, Nano Lett. 11 (2011) 3123-3127.

DOI: 10.1021/nl2011559

Google Scholar