[1]
K. Binnemans, Ionic Liquid Crystals, Chem. Rev. 105 (2005) 4148–4204.
DOI: 10.1021/cr0400919
Google Scholar
[2]
C. Tschierske, Mоlecular self-organization of amphotropic liquid crystals, Progr. Polym. Sci. 21 (1996) 775-852.
DOI: 10.1016/s0079-6700(96)00014-7
Google Scholar
[3]
J.W. Goodby, Liquid Crystal Phases Exhibited by Some Monosaccharides, Mol. Cryst. Liq. Cryst. 110 (1984) 205-219.
DOI: 10.1080/00268948408074506
Google Scholar
[4]
J.J. Hernandez, H. Zhang, Y. Chen, M. Rosenthal, M.D. Lingwood, M. Goswami, M. Möller, L.A. Madsen, D.A. Ivamov, Bottom-Up Fabrication of Nanostructured Bicontinuous and Hexagonal Ion-Conducting Polymer Membranes, Macromolecules. 14 (2017) 5392-5401.
DOI: 10.1021/acs.macromol.6b02674
Google Scholar
[5]
Y. Chen, M.D. Lingwood, M. Goswami, B.E. Kidd, J.J. Hernandez, M. Rosenthal, D.A. Ivanov, J. Perlich, H. Zhang, X. Zhu, M. Möller, L.A. Madsen, Humidity-modulated phase control and nanoscopic transport in supramolecular assemblies, Journal of Physical Chemistry B. 11 (2014) 3207-3217.
DOI: 10.1021/jp409266r
Google Scholar
[6]
H. Zhang, L. Li, M. Moller, X. Zhu, J.J. Hernandez, M. Rosental, D.A. Ivanov, From Channel‐Forming Ionic Liquid Crystals Exhibiting Humidity‐Induced Phase Transitions to Nanostructured Ion‐Conducting Polymer Membranes, Advanced Materials. 25 (2013) 3543-3548.
DOI: 10.1002/adma.201205097
Google Scholar
[7]
X. Zhu, B. Tartsch, U. Beginn, M. Möller, Wedge‐Shaped Molecules with a Sulfonate Group at the Tip—A New Class of Self‐Assembling Amphiphiles, Chem. - Eur. J. 10 (2004) 3871-3878.
DOI: 10.1002/chem.200400050
Google Scholar
[8]
X. Zhu, U. Beginn, M. Möller, R.I. Gearba, D.V. Anokhin, D.A. Ivanov, Self-Organization of Polybases Neutralized with Mesogenic Wedge-Shaped Sulfonic Acid Molecules: An Approach toward Supramolecular Cylinders, J. Am. Chem. Soc. 128 (2006) 16928-16937.
DOI: 10.1021/ja065968v
Google Scholar
[9]
K.N. Grafskaia, D.V. Anokhin, J.J. Hernandez, D.A. Ivanov, In situ studies of molecular self-assembling during the formation of ionconducting membranes for fuel cells, Appl. Mech. Mater. 792 (2015) 623–628.
DOI: 10.4028/www.scientific.net/amm.792.623
Google Scholar
[10]
K. Grafskaia, B. Zimka, X. Zhu, D. Anokhin, D. Ivanov, Engineering of ion channels topology in self-assembled wedge-shaped amphiphiles by combination of temperature and solvent vapor treatment, AIP Conference Proceedings 1748 (2016) 040009.
DOI: 10.1063/1.4954361
Google Scholar
[11]
A. Dolgopolov, K.N. Grafskaia, D.V. Anokhin, D.E. Demco, X. Zhu, D.A. Ivanov, M. Möller, Humidity-induced formation of water channels in supramolecular assemblies of wedge-shaped amphiphiles: the effect of the molecular architecture on the channel topology, Phys.Chem.Chem.Phys. 19 (2017) 7714.
DOI: 10.1039/c6cp08087a
Google Scholar
[12]
J. Liu, C.E. Nicholson, S.J. Cooper, Direct Measurement of Critical Nucleus Size in Confined Volumes, Langmuir. 23 (2017) 7286-7292.
DOI: 10.1021/la063650a
Google Scholar
[13]
T. Mizuguchi, Critical nucleus size for crystallization of supercooled liquids in two dimensions, Physical Review E. 95 (2017) 042804.
DOI: 10.1103/physreve.95.042804
Google Scholar
[14]
K.N. Grafskaia, D.V. Anokhin, B.I. Zimka, I.A. Izdelieva, X. Zhu, D.A. Ivanov, An 'on–off', switchable cubic phase with exceptional thermal stability and water sorption capacity, Chem. Commun. 99 (2017) 13217-13220.
DOI: 10.1039/c7cc08003d
Google Scholar
[15]
K.N. Grafskaia, J.J. Hernandez Rueda, X. Zhu, V.M. Nekipelov, D.V. Anokhin, M. Moeller, D.A. Ivanov, Designing the topology of ion nano-channels in the mesophases of amphiphilic wedge-shaped molecules, Phys.Chem.Chem.Phys. 17 (2015) 30240-30247.
DOI: 10.1039/c5cp05618g
Google Scholar