Effect of Crystallinity on Near Infrared Reflectance of Indium TiN Oxide Nanorice-Particles

Article Preview

Abstract:

Tin-doped indium oxide or indium tin oxide (ITO) has many promising uses in applications, such as, transparent conductive oxides, flat panel displays, and energy-saving windows. In this work, nanorice particles of tin-doped indium oxide (ITO) were obtained by a simple sol-gel method. Indium salts and stannous fluoride precursors were mixed ultrasonically in an aqueous medium. The crystallinity and chemical bonds were studied by X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR). FTIR spectra before calcination showed the characteristic bonds of In–OH and Sn–OH at 1160 cm-1 and 1380 cm-1, respectively. After calcination at 400°C for 2 h, these characteristic bonds disappeared, confirming the formation of crystalline oxide. Moreover, scanning electron micrographs revealed well-defined structure, called nanorice, emerging from controlled crystal growth at 85°C for 90 min. The particle size of ITO was approximately 500 nm in length and diameter of 150 nm. The effect of crystallinity was studied by UV absorbance and NIR reflectance. These demonstrated promising results for use as energy-saving windows.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

168-175

Citation:

Online since:

October 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G.K. Dalapati, A.K. Kushwaha, M. Sharma, V. Suresh, S. Shannigrahi, S. Zhuk, S. Masudy-Panah, Transparent heat regulating (THR) materials and coatings for energy saving window applications: Impact of materials design, micro-structural, and interface quality on the THR performance, Prog. Mater. Sci. 95 (2018) 42–131.

DOI: 10.1016/j.pmatsci.2018.02.007

Google Scholar

[2] A. Katili, R. Boukhanouf, R. Wilson, Space cooling in buildings in hot and humid climates – a Review of the effect of humidity on the applicability of existing cooling techniques, In Proceedings of the International Conference on Sustainable Energy Technologies, Nottingham, UK, August 25‐27, (2015).

Google Scholar

[3] S. Long, X. Cao, N. Li, Y. Xin, G. Sun, T. Chang, S. Bao, P. Jin, Application-oriented VO2 thermochromic coatings with composite structures: Optimized optical performance and robust fatigue properties, Sol. Energy Mater. Sol. Cells. 138 (2019) 138–148.

DOI: 10.1016/j.solmat.2018.09.023

Google Scholar

[4] L. Yao, Z. Qu, Z. Pang, J. Li, J. He, L. Feng, Three-layered hollow nanospheres based coatings with ultrahigh-performance of energy-saving, antireflection, and self-cleaning for smart windows, Nano Micro Small. 14 (34) (2018) 1801661.

DOI: 10.1002/smll.201801661

Google Scholar

[5] C.G. Granqvist, Electrochromics for smart windows: Oxide-based thin films and devices, Thin Solid Films. 564 (2014) 1–38.

DOI: 10.1016/j.tsf.2014.02.002

Google Scholar

[6] P. Pattathil, R. Giannuzzi, M. Manca, Self-powered NIR-selective dynamic windows based on broad tuning of the localized surface plasmon resonance in mesoporous ITO electrodes, Nano Energy. 30 (2016) 242–251.

DOI: 10.1016/j.nanoen.2016.10.013

Google Scholar

[7] A. Ghosh, B. Norton, Optimization of PV powered SPD switchable glazing to minimise probability of loss of power supply, Renewable Energy. 131 (2019) 993-1001.

DOI: 10.1016/j.renene.2018.07.115

Google Scholar

[8] D.J. Kim, D.Y. Hwang, J.Y. Park, H.K. Kim, Liquid crystal–based flexible smart windows on roll-to-roll slot die–Coated Ag nanowire network films, J. Alloys Compd. 765 (2018) 1090–1098.

DOI: 10.1016/j.jallcom.2018.06.285

Google Scholar

[9] G.H. Sheetah, Q. Liu, B. Senyuk, B. Fleury, I. I. Smalyukh, Electric switching of visible and infrared transmission using liquid crystals co-doped with plasmonic gold nanorods and dichroic dyes, Opt. Express. 26 (17) (2018) 22264–22272.

DOI: 10.1364/oe.26.022264

Google Scholar

[10] D. Alonso-Álvarez, L. Ferre Llin, A. Mellor, D.J. Paul, N.J. Ekins-Daukes, ITO and AZO films for low emissivity coatings in hybrid photovoltaic-thermal applications, Sol. Energy. 155 (2017) 82–92.

DOI: 10.1016/j.solener.2017.06.033

Google Scholar

[11] K. Chiba, T. Takahashi, T. Kageyama, H. Oda, Low-emissivity coating of amorphous diamond-like carbon/Ag-alloy multilayer on glass, Appl. Surf. Sci. 246 (1) (2005) 48–51.

DOI: 10.1016/j.apsusc.2004.10.046

Google Scholar

[12] G. Ding, C. Clavero, D. Schweigert, M. Le, Thickness and microstructure effects in the optical and electrical properties of silver thin films, AIP Adv. 5 (11) (2015) 117234.

DOI: 10.1063/1.4936637

Google Scholar

[13] P. Grosse, R. Hertling, T. Müggenburg, Design of low emissivity systems based on a three-layer coating, J. Non-Cryst. Solids. 218 (1997) 38–43.

DOI: 10.1016/s0022-3093(97)00130-0

Google Scholar

[14] A.A. Solovyev, S.V. Rabotkin, N.F. Kovsharov, Polymer films with multilayer low-E coatings, Mater. Sci. Semicond. Process. 38 (2015) 373–380.

DOI: 10.1016/j.mssp.2015.02.051

Google Scholar

[15] B.P. Jelle, S.E. Kalnæs, T. Gao, Low-emissivity materials for building applications: A state-of-the-art review and future research perspectives, Energy and Buildings. 96 (2015) 329–356.

DOI: 10.1016/j.enbuild.2015.03.024

Google Scholar

[16] P. Tao, A. Viswanath, L.S. Schadler, B.C. Benicewicz, R.W. Siegel, Preparation and optical properties of indium tin oxide/epoxy nanocomposites with polyglycidyl methacrylate grafted nanoparticles, ACS Appl. Mater. Interfaces. 3 (9) (2011) 3638–3645.

DOI: 10.1021/am200841n

Google Scholar

[17] Z. Ding, C. An, Q. Li, Z. Hou, J. Wang, H. Qi, F. Qi, Preparation of ITO nanoparticles by liquid phase coprecipitation method, J. Nanomaterials. 2010 (2010) 1–5.

DOI: 10.1155/2010/543601

Google Scholar

[18] S. Li, X. Qiao, J. Chen, H. Wang, F. Jia, X. Qiu, Effects of temperature on indium tin oxide particles synthesized by co-precipitation, J. Cryst. Growth. 289(1) (2006) 151–156.

DOI: 10.1016/j.jcrysgro.2005.11.012

Google Scholar

[19] D. Yu, D. Wang, J. Lu, Y. Qian, Preparation of corundum structure Sn-doped In2O3 nanoparticles via controlled co-precipitating and post annealing route, Inorg. Chem. Commun. 5(7) (2002) 475-477.

DOI: 10.1016/s1387-7003(02)00454-9

Google Scholar

[20] H. Liu, X. Zeng, X. Kong, S. Bian, J. Chen, A simple two-step method to fabricate highly transparent ITO/polymer nanocomposite films, Appl. Surf. Sci. 258(22) (2012) 8564-8569.

DOI: 10.1016/j.apsusc.2012.05.049

Google Scholar

[21] J.S. Lee, S.C. Choi, Solvent effect on synthesis of indium tin oxide nano-powders by a solvothermal process, J. Eur. Ceram. Soc. 25(14) (2005) 3307–3314.

DOI: 10.1016/j.jeurceramsoc.2004.08.022

Google Scholar

[22] G.M. Silva, E.H.d. Faria, E.J. Nassar, K.J. Ciuffi, P.S. Calefi, Synthesis of indium tin oxide nanoparticles by a nonhydrolytic sol-gel method, Quim. Nova. 35 (2012) 473-476.

DOI: 10.1590/s0100-40422012000300006

Google Scholar

[23] R. Baghi, K. Zhang, S. Wang, L.J. Hope-Weeks, Conductivity tuning of the ITO sol-gel materials by adjusting the tin oxide concentration, morphology and the crystalline size, Microporous Mesoporous Mater. 244 (2017) 258-263.

DOI: 10.1016/j.micromeso.2016.10.045

Google Scholar

[24] L. Kőrösi, A. Scarpellini, P. Petrik, S. Papp, I. Dékány, Sol–gel synthesis of nanostructured indium tin oxide with controlled morphology and porosity, Appl. Surf. Sci. 320 (2014) 725-731.

DOI: 10.1016/j.apsusc.2014.09.178

Google Scholar

[25] M. Misra, D.K. Hwang, Y.C. Kim, J.M. Myoung, T.I. Lee, Eco-friendly method of fabricating indium-tin-oxide thin films using pure aqueous sol-gel, Ceram. Int. 44 (3) (2018) 2927-2933.

DOI: 10.1016/j.ceramint.2017.11.041

Google Scholar

[26] W.H. Ho, S.K. Yen, Preparation and characterization of indium oxide film by electrochemical deposition, Thin Solid Films. 498 (1) (2006) 80-84.

DOI: 10.1016/j.tsf.2005.07.072

Google Scholar

[27] Z. Zhuang, Q. Peng, J. Liu, X. Wang, Y. Li, Indium hydroxides, oxyhydroxides, and oxides nanocrystals series, Inorg. Chem. 46 (13) (2007) 5179-5187.

DOI: 10.1021/ic061999f

Google Scholar

[28] X. Tao, Y. Zhao, L. Sun, S. Zhou, One-pot low temperature solvothermal synthesis of In2O3 and InOOH nanostructures, Mater. Chem. Phys. 149–150 (2015) 275-281.

DOI: 10.1016/j.matchemphys.2014.10.017

Google Scholar