Metallic Film Modified Screen-Printed Carbon Electrode for Determination of 17α-Methyltestosterone

Article Preview

Abstract:

17α-methyltestosterone (MT) is a synthetic androgen. It is used widely for inducing an all-male population of Nile tilapia (Oreochromis niloticus). In this work, the detection of MT was conducted using screen-printed carbon electrodes (SPCE). These were a bare electrode, a bismuth modified electrode (Bi-SPCE) and an antimony modified electrode (Sb-SPCE). The successful electrode modification was confirmed by scanning electron microscopy. The electroanalytical performance of the SPCE modified electrodes for MT detection was examined by cyclic voltammetry. The highest active surface area of 1.073x10-4 cm2 was obtained on Sb-SPCE. This indicates that Sb-SPCE can enhance the sensitivity of MT detection better than the bare-SPCE and the Bi-SPCE. The Sb-SPCE showed a linear response for MT concentrations ranging from 2 to 8 mg.L-1. The sensitivity obtained from the slope of a calibration curve was -0.452 mA.mol-1.L-1 in a Britton-Robinson buffer pH 4.0 containing Sb 16 mg.L-1 with deposition potential and deposition time of 1 V and 90 seconds, respectively. A linear relationship between the square root of the scan rate and the peak current revealed that mass transfer of MT to the electrode was driven by a diffusion mechanism. The limit of detection was found to be 1 mg.L-1.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

182-189

Citation:

Online since:

October 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z.G. Shen, Q.X. Fan, W. Yang, Y.L. Zhang, H.P. Wang, Effects of 17 α-methyltestosterone and aromatase inhibitor letrozole on sex reversal, gonadal structure, and growth in yellow catfish Peltobagrus fulvidaco, Biol. Bull. 228 (2015) 108 –117.

DOI: 10.1086/bblv228n2p108

Google Scholar

[2] J. Gao, S. Liu, Y. Zhang, Y. Yang, C. Yuan, S. Chen, Z. Wang, Effects of 17 α-methyltestosterone on transcriptome, gonadal histology and sex steroid hormones in rare minnow (Gobiocypris rarus), Comp. Biochem. Physiol., Part D: Genomics Proteomics. 15 (2015) 20-27.

DOI: 10.1016/j.cbd.2015.05.001

Google Scholar

[3] M. Seki, H. Yokota, H. Matsubara, M. Maeda, H. Todokoro, K. Kobayashi, Fish full life-cycle testing for androgen methyltestosterone on medaka (Oryzias Latipes), Environ. Toxicol. Chem. 23 (2004) 774-81.

DOI: 10.1897/03-26

Google Scholar

[4] Q. Zhong, Y. Hu, G.Li, A novel protocol for molecularly imprinted polymer filaments online coupled to GC-MS for the determination of androgenic steroids in urine, J. Sep. Sci. 36 (2013) 3903-3910.

DOI: 10.1002/jssc.201300874

Google Scholar

[5] I. R. Barbosa, S. Lopes, R. Oliveira, I. Domingues, A.M.V.M. Soares, A.J.A. Nogueira, Determination of 17 α-methyltestosterone in freshwater samples of tilapia farming by high-performance liquid chromatography, Am. J. Anal. Chem. 04 (2013) 207-211.

DOI: 10.4236/ajac.2013.44026

Google Scholar

[6] P.S. Chu, M. Lopez, S. Serfling, C. Gieseker, R. Reimschuessel, Determination of 17α-methyltestosterone in muscle tissues of tilapia, rainbow trout, and salmon using liquid chromatography-tandem mass spectrometry, J. Agric. Food Chem. 54 (2006) 3193-3198.

DOI: 10.1021/jf052701r

Google Scholar

[7] H. Shengshui, C. Zilin, Z. Tao, Adsorptive stripping voltammetry of testosterone propionate in pharmaceutical Preparations, J. Anal. Chem. 346 (1993) 1008-1010.

DOI: 10.1007/bf00322768

Google Scholar

[8] R.N. Goyal, V.K. Gupta, S. Chatterjee, Electrochemical investigations of corticosteroid isomers-testosterone and epitestosterone and their simultaneous determination in human urine, Anal. Chem. Acta. 657 (2010) 147-153.

DOI: 10.1016/j.aca.2009.10.035

Google Scholar

[9] A. Levent, A. Altun, S. Taş, Y. Yardım, Z. Şentürk, Voltammetric behavior of testosterone on bismuth film electrode: highly sensitive determination in pharmaceuticals and human urine by square-wave adsorptive stripping voltammetry, Electroanalysis. 27 (2015) 1219-1228.

DOI: 10.1002/elan.201400627

Google Scholar

[10] L. Miranda, A. Galli, S.P. Quináia, Endocrine interfering in natural waters: voltammetric determination of 17α-methyltestosterone, Rev. Virtual Quim. 6 (2014).

DOI: 10.5935/1984-6835.20140029

Google Scholar

[11] O.D. Renedo, M.A. Alonso-Lomillo, M.J. Martinez, Recent developments in the field of screen-printed electrodes and their related applications, Talanta. 73 (2007) 202-219.

DOI: 10.1016/j.talanta.2007.03.050

Google Scholar

[12] M. Li, D.W. Li, G. Xiu, Y.T. Long, Applications of screen-printed electrodes in current environmental analysis, Curr. Opin. Electrochem. 3 (2017) 137-143.

Google Scholar

[13] M. Li, Y.T. Li, D.W. Li, Y.T. Long, Recent developments and applications of screen-printed electrodes in environmental assays-a review, Anal. Chem. Acta. 734 (2012) 31-44.

DOI: 10.1016/j.aca.2012.05.018

Google Scholar

[14] M. Eguilaz, M. Moreno-Guzman, S. Campuzano, A. Gonzalez-Cortes, P. Yanez-Sedeno, J.M. Pingarron, An electrochemical immunosensor for testosterone using functionalized magnetic beads and screen-printed carbon electrodes, Biosens. Bioelectron. 26 (2010) 517-522.

DOI: 10.1016/j.bios.2010.07.060

Google Scholar

[15] N. Serrano, J.M. Díaz-Cruz, C. Ariño, M. Esteban, Antimony-based electrodes for analytical determinations, TrAC, Trends Anal. Chem. 77 (2016) 203-213.

DOI: 10.1016/j.trac.2016.01.011

Google Scholar

[16] C. Chen, X. Niu, Y. Chai, H. Zhao, M. Lan, Y. Zhu, G. Wei, Determination of lead(II) using screen-printed bismuth-antimony film electrode, Electroanalysis. 25 (2013) 1446-1452.

DOI: 10.1002/elan.201200625

Google Scholar

[17] M. Libansky, J. Zima, J. Barek, A. Reznickova, V. Svorcik, H. Dejmkova, Basic electrochemical properties of sputtered gold film electrodes, Electrochim. Acta. 251 (2017) 452-460.

DOI: 10.1016/j.electacta.2017.08.048

Google Scholar

[18] N.P. Shetti, D.S. Nayak, S.J. Malode, R.M. Kulkarni, An electrochemical sensor for clozapine at ruthenium doped TiO2 nanoparticles modified electrode, Sens. Actuators, B. 247 (2017) 858-867.

DOI: 10.1016/j.snb.2017.03.102

Google Scholar