Structural and Spectroscopic Properties of Metal Complexes with Ruhemann’s Purple Compounds Calculated Using Density Functional Theory

Article Preview

Abstract:

Structural and spectroscopic properties of Ruhemann’s purple (RP) and its transition metal coordination complexes were calculated using theoretical chemistry techniques. The obtained information described RP and its coordination complexes with the transition metal ions [Cr(II), Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II)]. The procedures involved calculations of what are called density functional theory (DFT) and time-dependent DFT (TD-DFT). These methods optimized what is called, in the codes of theoretical chemistry, the hybrid density B3LYP function employing the 6‐311++G(d,p) and LANL2DZ basis sets. The RP geometries, bond lengths, angles, quantum chemical parameters, and excitation spectra indicate that the RP is well able to coordinate with a transition element ion. Then the correlation of these theoretical results with experimental observations provides a detailed description of the structural and spectroscopic properties of RP compounds. The inclusion of solvent effects causes a blue shift in all theoretical excitation spectra. In summary, this work leads to an understanding of the characteristics of transition metal complexes with Ruhemann’s purple. These materials can be applied in forensic chemistry as reagents in developing latent fingerprints.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

204-211

Citation:

Online since:

October 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E.W. Yemm, E.C. Cocking, R.E. Ricketts, The determination of amino-acids with ninhydrin, Analyst, 80 (1955) 209-214.

DOI: 10.1039/an9558000209

Google Scholar

[2] P.J. Lamothe, P.G. McCormick, Role of hydrindantin in the determination of amino acids using ninhydrin, Anal. Chem., 45 (1973) 1906-1911.

DOI: 10.1021/ac60333a021

Google Scholar

[3] M. Friedman, Applications of the ninhydrin reaction for analysis of amino acids, peptides, and proteins to agricultural and biomedical sciences, J. Agric. Food Chem., 52 (2004) 385-406.

DOI: 10.1021/jf030490p

Google Scholar

[4] R. Jelly, E.L.T. Patton, C. Lennard, S.W. Lewis, K.F. Lim, The detection of latent fingermarks on porous surfaces using amino acid sensitive reagents: A review, Anal. Chim. Acta, 652 (2009) 128-142.

DOI: 10.1016/j.aca.2009.06.023

Google Scholar

[5] E.R. Menzel, R.A. Bartsch, J.L. Hallman, Fluorescent metal-Ruhemann's Purple coordination compounds: Applications to latent fingerprint detection, J. Forensic Sci., 35 (1990) 25-34.

DOI: 10.1520/jfs12798j

Google Scholar

[6] M.M. Joullié, T.R. Thompson, N.H. Nemeroff, Ninhydrin and ninhydrin analogs. Syntheses and applications, Tetrahedron, 47 (1991) 8791-8830.

DOI: 10.1016/s0040-4020(01)80997-2

Google Scholar

[7] D.B. Hansen, M.M. Joullie, The development of novel ninhydrin analogues, Chem. Soc. Rev., 34 (2005) 408-417.

Google Scholar

[8] P.J. Davies, M.R. Taylor, K.P. Wainwright, H.J. Kobus, Zinc(II) chloride-methanol complex of 2-[(1,3-Dihydro-1,3-dioxo-2H-inden-2-ylidene)amino]-1H-indene-1,3(2H)-dionate(1-)sodium salt: a complex of Ruhemann's purple, Acta Crystallogr. C, 51 (1995) 1802-1805.

DOI: 10.1107/s0108270195003325

Google Scholar

[9] H.J. Kobus, M. Stoilovic, R.N. Warrener, A simple luminescent post-ninhydrin treatment for the improved visualisation of fingerprints on documents in cases where ninhydrin alone gives poor results, Forensic Sci. Int., 22 (1983) 161-170.

DOI: 10.1016/0379-0738(83)90009-9

Google Scholar

[10] P.J. Davies, H.J. Kobus, M.R. Taylor, K.P. Wainwright, Synthesis and structure of the zinc(II) and cadmium(II) complexes produced in the photoluminescent enhancement of ninhydrin developed fingerprints using group 12 metal salts, J. Forensic Sci., 40 (1995) 565-569.

DOI: 10.1520/jfs13826j

Google Scholar

[11] M. Promkatkaew, S. Suramitr, T. Karpkird, M. Ehara, S. Hannongbua, Absorption and emission properties of various substituted cinnamic acids and cinnamates, based on TDDFT investigation, Int. J. Quan. Chem., 113 (2012) 542-554.

DOI: 10.1002/qua.24169

Google Scholar

[12] J. Nie, R.J. Li, L.J. He, J. Li, Density functional theory study of the interaction of nitric oxide with 3D transition metal dimers, Mater. Sci. Forum, 804 (2015) 145-148.

DOI: 10.4028/www.scientific.net/msf.804.145

Google Scholar

[13] Q.X. Zhou, Z.B. Fu, C.Y. Wang, X. Yang, L. Yuan,  Y.J. Tang , Electronic and magnetic properties of rare-earth atoms absorbed on graphene sheet: A theoretical study, Key Eng. Mater., 645-646 (2015) 40-44.

DOI: 10.4028/www.scientific.net/kem.645-646.40

Google Scholar

[14] A.N. Carneiro Neto, R.T. Moura, E.C. Aguiar, C.V. Santos, M.A.F.L.B. de Medeiros, Theoretical study of geometric and spectroscopic properties of Eu(III) complexes with Ruhemann's purple ligands, J. Lumin., 201 (2018) 451-459.

DOI: 10.1016/j.jlumin.2018.05.014

Google Scholar

[15] M.G. Derebe, V.J.T. Raju, N. Retta, Synthesis and characterization of some metal complexes of a Schiff base derived from ninhydrin and alpha,L-alanine, B. Chem. Soc. Ethiopia, 16 (2002) 53-64.

DOI: 10.4314/bcse.v16i1.20948

Google Scholar

[16] A.E. Fazary, K.F. Fawy, M.Z. Bani-Fwaz, T. Sahlabji, H.S.M. Abd-Rabboh, Thermodynamic studies on metal ions – Ninhydrin – Glycine interactions in aqueous solutions, J. Chem. Thermodyn., 118 (2018) 302-315.

DOI: 10.1016/j.jct.2017.12.005

Google Scholar

[17] C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B, 37 (1988) 785-789.

DOI: 10.1103/physrevb.37.785

Google Scholar

[18] A.D. Becke, Density‐functional thermochemistry. III. The role of exact exchange, J. Chem. Phys., 98 (1993) 5648-5652.

DOI: 10.1063/1.464913

Google Scholar

[19] R. Krishnan, J.S. Binkley, R. Seeger, J.A. Pople, Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions, J. Chem. Phys., 72 (1980) 650-654.

DOI: 10.1063/1.438955

Google Scholar

[20] P.J. Hay, W.R. Wadt, Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg, J. Chem. Phys., 82 (1985) 270-283.

DOI: 10.1063/1.448799

Google Scholar

[21] E. Runge, E.K.U. Gross, Density-functional theory for time-dependent systems, Phys. Rev. Lett., 52 (1984) 997-1000.

DOI: 10.1103/physrevlett.52.997

Google Scholar

[22] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, (2009).

Google Scholar

[23] R.G. Parr, P.K. Chattaraj, Principle of maximum hardness, J. Am. Chem. Soc., 113 (1991) 1854-1855.

DOI: 10.1021/ja00005a072

Google Scholar

[24] M. Lamsayah, M. Khoutoul, A. Takfaoui, R. Touzani, High liquid–liquid extraction selectivity of Fe(II) and Pb(II) with TD-DFT theoretical calculations of long chain acid pyrazole- and triazole-based ligands, Cogent Chem., 2 (2016) 1230359.

DOI: 10.1080/23312009.2016.1230359

Google Scholar