[1]
D.S. Su, The Use of Natural Materials in Nanocarbon Synthesis, ChemSusChem 2 (2009) 1009-1020.
Google Scholar
[2]
M. Ahmedna, W. Marshall, R. Rao, Surface properties of granular activated carbons from agricultural by-products and their effects on raw sugar decolorization, Bioresour. Technol. 71 (2000) 103–112.
DOI: 10.1016/s0960-8524(99)90069-x
Google Scholar
[3]
K. Legrouri, E. Khouya, M. Ezzine, H. Hannache, R. Denoyel, R. Pallier, R. Naslain, Production of activated carbon from a new precursor molasses by activation with sulphuric acid, J. Hazard. Mater. 118 (2005) 259-263.
DOI: 10.1016/j.jhazmat.2004.11.004
Google Scholar
[4]
C. Falco, M. Sevilla, R.J. White, R. Rothe, M.M. Titirici, Renewable Nitrogen‐Doped Hydrothermal Carbons Derived from Microalgae, ChemSusChem 5 (2012) 1834-1840.
DOI: 10.1002/cssc.201200022
Google Scholar
[5]
S. Kubo, R. Demir-Cakan, L. Zhao, R.J. White, M.M. Titirici, Porous Carbohydrate‐Based Materials via Hard Templating, ChemSusChem 3 (2010) 188-194.
DOI: 10.1002/cssc.200900126
Google Scholar
[6]
N. Baccile, M. Antonietti, M.M. Titirici, One‐Step Hydrothermal Synthesis of Nitrogen‐Doped Nanocarbons: Albumine Directing the Carbonization of Glucose, ChemSusChem 3 (2010) 246-253.
DOI: 10.1002/cssc.200900124
Google Scholar
[7]
G.K. Parshetti, Z. Liu, A. Jain, M. Srinivasan, R. Balasubramanian, Hydrothermal carbonization of sewage sludge for energy production with coal, Fuel 111 (2013) 201-210.
DOI: 10.1016/j.fuel.2013.04.052
Google Scholar
[8]
B. Putrakumar, N. Nagaraju, V. Pavan Kumar, K. V.R. Chary, Hydrogenation of levulinic acid to γ-valerolactone over copper catalysts supported on γ-Al2O3, Catal. Today 250 (2015) 209-217.
DOI: 10.1016/j.cattod.2014.07.014
Google Scholar
[9]
R. Ryoo, S.H. Joo, M. Kruk, M. Jaroniec, Ordered Mesoporous Carbons, Adv. Mater. 13 (2001) 677-681.
DOI: 10.1002/1521-4095(200105)13:9<677::aid-adma677>3.0.co;2-c
Google Scholar
[10]
A. Aygün, S. Yenisoy-Karakas, I. Duman, Production of granular activated carbon from fruit stones and nutshells and evaluation of their physical, chemical and adsorption properties, Microporous Mesoporous Mater. 66 (2003) 189-195.
DOI: 10.1016/j.micromeso.2003.08.028
Google Scholar
[11]
G. Stavropoulos, A. Zabaniotou, Production and characterization of activated carbons from olive-seed waste residue, Microporous Mesoporous Mater. 82 (2005)79-85.
DOI: 10.1016/j.micromeso.2005.03.009
Google Scholar
[12]
J. Yang, K. Qiu, Experimental Design To Optimize the Preparation of Activated Carbons from Herb Residues by Vacuum and Traditional ZnCl2 Chemical Activation, Ind. Eng. Chem. Res. 50 (2011) 4057-4064.
DOI: 10.1021/ie101531p
Google Scholar
[13]
J. Guo, A.C. Lua, Textural and chemical characterisations of activated carbon prepared from oil-palm stone with H2SO4 and KOH impregnation, Microporous Mesoporous Mater. 32 (1999) 111-117.
DOI: 10.1016/s1387-1811(99)00096-7
Google Scholar
[14]
C.O. Ania, J.B. Parra, J.A. Menendez, J.J. Pis, Effect of microwave and conventional regeneration on the microporous and mesoporous network and on the adsorptive capacity of activated carbons, Microporous Mesoporous Mater. 85 (2005) 7-15.
DOI: 10.1016/j.micromeso.2005.06.013
Google Scholar
[15]
W. Hao, E. Björkman, M. Lilliestråle, N. Hedin, Activated Carbons for Water Treatment Prepared by Phosphoric Acid Activation of Hydrothermally Treated Beer Waste, Ind. Eng. Chem. Res. 53 (2014) 15389-15397.
DOI: 10.1021/ie5004569
Google Scholar
[16]
K. Mohanty, M. Jha, B.C. Meikap, M.N. Biswas, Preparation and Characterization of Activated Carbons from Terminalia Arjuna Nut with Zinc Chloride Activation for the Removal of Phenol from Wastewater, Ind. Eng. Chem. Res. 44 (2005) 4128-4138.
DOI: 10.1021/ie050162+
Google Scholar
[17]
A.J. Romero-Anaya, M. Ouzzine, M.A. Lillo-Ródenas, A. Linares-Solano, Spherical carbons: Synthesis, characterization and activation processes, Carbon 68 (2014) 296-307.
DOI: 10.1016/j.carbon.2013.11.006
Google Scholar
[18]
A. Ruangmee, C. Sangwichien, Statistical optimization for alkali pretreatment conditions of narrow-leaf cattail by response surface methodology, Songklanakarin Journal of Science and Technology. 35 (4) (2013) 443-450.
DOI: 10.3850/978-981-07-1445-1_212
Google Scholar