Theoretical Study of the Electronic Structure and Properties of Alternating Donor-Acceptor Couples of Carbazole-Based Compounds for Advanced Organic Light-Emitting Diodes (OLED)

Article Preview

Abstract:

Generally, it is difficult to generate a high-performance pure blue emission organic light-emitting diode (OLED). That is because the intrinsically wide band-gap makes it hard to inject charges into the emitting layer in such devices. To solve the problem, carbazole derivatives have been widely used because they have more thermal stability, a good hole transporting property, more electron rich (p-type) material, and higher photoconductivity. In the present work, novel copolymers containing donor-acceptor-acceptor-donor (D-A-A-D) blue compounds used for OLEDs were investigated. The theory of the geometrical and electronic properties of N-ethylcarbazole (ECz) as donor molecule (D) coupled to a series of 6 acceptor molecules (A) for advanced OLEDs were investigated. The acceptors were thiazole (TZ), thiadiazole (TD), thienopyrazine (TPZ), thienothiadiazole (TTD), benzothiadiazole (BTD), and thiadiazolothienopyrazine (TDTP). The ground state structure of the copolymers were studied using Density Functional Theory (DFT) at B3LYP/6-31G(d) level. Molecular orbital analysis study indicated 3 investigated copolymers (ECz-diTZ-ECz, ECz-diTD-ECz, ECz-diBTD-ECz) have efficient bipolar charge transport properties for both electron and hole injection to the TiO2 conduction band (4.8 eV). In addition, the excited states electronic properties were calculated using Time-Dependent Density Functional Theory (TD-DFT) at the same level. Among these investigated copolymer ECz-diTZ-ECz and ECz-diTD-ECz showed the maximum absorption wavelengths (λabs) with blue emitting at 429 and 431 nm, respectively. The results suggested that selected D-A-A-D copolymers can improve the electron- and hole- transporting abilities of the devices. Therefore, the designed copolymers would be a promising material for future development of light-emitting diodes, electrochromic windows, photovoltaic cells, and photorefractive materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

236-244

Citation:

Online since:

October 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L.S. Liao and K. P. Klubek, Power efficiency improvement in a tandem organic light- emitting diode. Appl. Phys. Lett. 92 (2008) 223311-223313.

DOI: 10.1063/1.2938269

Google Scholar

[2] Y.C. Choi, J.W. Lee, S.K. Lee, M.S. Kang, C.S. Lee, K.W. Jung, J.H. Lim, J.W. Moon, M.I. Hwang, I.H. Kim, Y.H. Kim, B.G. Lee, H.R. Seon, S.J. Lee, J.H. Park, Y.C. Kim, H.S. Kim, The high contrast ratio and fast response time of a liquid crystal display lit by a carbon nanotube field emission backlight unit. Nanotechnology. 19 (2008) 235306 (5pp).

DOI: 10.1088/0957-4484/19/23/235306

Google Scholar

[3] C.Y. Peng, M.J. Wei, R.J. Huang, K.P. Guo, Y.L. Jing, T. Xu, B. Wei, Theoretical and Experimental Studies on Microcavity Organic Light-Emitting Diodes with Different Emitters. Key Engineering Materials 645-646 (2015) 1087-1092.

DOI: 10.4028/www.scientific.net/kem.645-646.1087

Google Scholar

[4] T.H. El-Assaad, M. Auer, R. Castaneda, K.M. Hallal, F.M. Jradi, L. Mosca, R.S. Khnayzer, Tetraaryl pyrenes: photophysical properties, computational studies, crystal structures, and application in OLEDs. J. Mater. Chem. C. 4 (2016) 3041-3058.

DOI: 10.1039/c5tc02849c

Google Scholar

[5] M. Zhu, C. Yang, Blue fluorescent emitters: design tactics and applications in organic light-emitting diodes. Chem. Soc. Rev. 42 (2013) 4963-4976.

DOI: 10.1039/c3cs35440g

Google Scholar

[6] J. Li, C. Ma, J. Tang, C. Lee, S. Lee, Novel Starburst Molecule as a Hole Injecting and Transporting Material for Organic Light-Emitting Devices. Chem. Mater. 17 (2005) 615-619.

DOI: 10.1021/cm048337d

Google Scholar

[7] Q. Zhang, J. Chen, Y. Chen, L. Wang, D. Ma, X. Jiang, F. Wang, Novel hole-transporting materials based on 1,4-bis(carbazolyl)benzene for organic light-emitting devices. J. Mater. Chem. 14 (2004) 895-900.

DOI: 10.1039/b309630k

Google Scholar

[8] X.T. Tao, Y.D. Zhang, T. Wada, H. Sasabe, H. Suzaki, T. Watanabe, S. Miyata, Hyperbranched polymers for electroluminescence applications. Adv. Mater. 10 (1998) 226-230.

DOI: 10.1002/(sici)1521-4095(199802)10:3<226::aid-adma226>3.0.co;2-e

Google Scholar

[9] A. Baba, K. Onishi, W. Knoll, R.C. Advincula, Investigating work function tunable hole-injection/transport layers of electrodeposited polycarbazole network thin films, J. Phys. Chem. B. 108 (2004) 18949-18955.

DOI: 10.1021/jp047965f

Google Scholar

[10] G. Mengoli, M.M. Musiani, B. Schreck, S. Zecchin, Electrochemical synthesis and properties of polycarbazole films in protic acid-media. J. Electroanal. Chem. 246 (1988) 73-86.

DOI: 10.1016/0022-0728(88)85052-6

Google Scholar

[11] D.B. Romero, M. Schaer, M. Leclerc, D. Ades, A. Siove, L. Zuppiroli, The role of carbazole inorganic light-emitting devices. Synth. Met. 80 (1996) 271-277.

DOI: 10.1016/0379-6779(96)80213-x

Google Scholar

[12] C.I. Chao, S.A. Chen, White light emission from exciplex in a bilayer device with two blue light-emitting polymers. Appl. Phys. Lett. 73 (1998) 426-428.

DOI: 10.1063/1.121888

Google Scholar

[13] K.D. Almeida, J.C. Berneade, S. Marsillac, A. Godoy, F.R. Diaz, Carbazole based electroluminescent devices obtained by vacuum evaporation. Synth. Met. 122 (2001) 127-129.

DOI: 10.1016/s0379-6779(00)01347-3

Google Scholar

[14] D.B. Romero, F. Nueesch, T. Benazzi, D. Ades, A. Siove, L. Zuppiroli, Electroluminescence from carbazole dimers. Adv. Mater. 9 (1997) 1158-1161.

DOI: 10.1002/adma.19970091506

Google Scholar

[15] M. Aydemir, G. Haykır, A. Battal, V. Jankus, S.K. Sugunan, F.B. Dias, High efficiency OLEDs based on anthracene derivatives: the impact of electron donating and withdrawing group on the performance of OLED. Org. Electron. 30 (2016) 149-157.

DOI: 10.1016/j.orgel.2015.11.026

Google Scholar

[16] M. Hissler, C. Lescop, R. Reau, Organophosphorus π-conjugated materials: the rise of a new field. J. Organomet. Chem. 690 (2005) 2482-2487.

DOI: 10.1016/j.jorganchem.2004.09.067

Google Scholar

[17] R. Vivas-Reyes, L.D. Mercado, J.A. Gil, A.G. Marrugo, E. Martinez, Theoretical study to evaluate polyfuran electrical conductivity and methylamine, methoxy substituent effects. J. Mol. Struct. (THEOCHEM) 861 (2008) 137-141.

DOI: 10.1016/j.theochem.2008.04.019

Google Scholar

[18] G.W.T. M. J. Frisch, H. B. Schlegel, et. al. Gaussian, Inc., Wallingford CT, (2016).

Google Scholar

[19] R. Aïch, B. Ratier, F. Tran-van, F. Goubard, C. Chevrot. Small molecule organic solar cells based on phthalocyanine/perylene-carbazole donor-acceptor couple Thin. Solid. Films. 516 (2008) 7171-7175.

DOI: 10.1016/j.tsf.2007.12.011

Google Scholar

[20] M. Belletête, J-F. Morin, M. Leclerc, G. Durocher. A Theoretical, Spectroscopic, and Photophysical Study of 2,7-Carbazolenevinylene-Based Conjugated Derivatives. J. Phys. Chem. A 109 (2005) 6953-6959.

DOI: 10.1021/jp051349h

Google Scholar